Citation: Li Ying, Ma Zhiqiang, Xu Xuetao. Application of tert-Butanesulfinamide in Total Synthesis of Natural Products[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 3991-4014. doi: 10.6023/cjoc202006024 shu

Application of tert-Butanesulfinamide in Total Synthesis of Natural Products

  • Corresponding author: Ma Zhiqiang, cezqma@scut.edu.cn Xu Xuetao, wyuchemxxt@126.com
  • Received Date: 15 June 2020
    Revised Date: 23 July 2020
    Available Online: 30 July 2020

    Fund Project: Project supported by the Department of Education of Guangdong Province (No. 2019KZDXM035)the Department of Education of Guangdong Province 2019KZDXM035

Figures(35)

  • The formation of chiral amine intermediates with chiral tert-butanesulfinamide and their applications in asymmetric natural product synthesis in recent years are summarized. tert-Butanesulfinamide has attracted wide attention from chemists because it is stable, commercially available with reasonable price, ease to use, and usually induces high diastereoselectivity in the reactions involved. This review is divided into two sections, including the addition of nucleophiles to tert-butanesulfinyl imide and the addition of tert-butanesulfinyl metal enamine to electrophiles.
  • 加载中
    1. [1]

      Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997, 119, 9913.

    2. [2]

    3. [3]

      (a) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124, 6518.
      (b) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2003, 125, 11276.

    4. [4]

      Xu, H. C.; Chowdhury, S.; Ellman, J. A. Nat. Protoc. 2013, 8, 2271.

    5. [5]

      Kościołowicz, A.; Rozwadowska, M. D. Tetrahedron:Asymmetry 2006, 17, 1444.

    6. [6]

      Si, C.-M.; Mao, Z.-Y.; Dong, H.-Q.; Du, Z.-T.; Wei, B.-G.; Lin, G.-Q. J. Org. Chem. 2015, 80, 5824.

    7. [7]

      Si, C.-M.; Mao, Z.-Y.; Liu, Y.-W.; Du, Z.-T.; Wei, B.-G.; Lin, G.-Q. Org. Chem. Front. 2015, 2, 1485.

    8. [8]

      Kiemele, E. R.; Wathier, M.; Bichler, P.; Love, J. A. Org. Lett. 2016, 18, 492.

    9. [9]

      Pinto, A.; Griera, R.; Molins, E.; Fernández, I.; Bosch, J.; Amat, M. Org. Lett. 2017, 19, 1714.

    10. [10]

      Pinto, A.; Piccichè, M.; Griera, R.; Molins, E.; Bosch, J.; Amat, M. J. Org. Chem. 2018, 83, 8364.

    11. [11]

      Taghizadeh, M. J.; Gohari, S. J. A.; Javidan, A.; Moghimi, A.; Iman, M. J. Iran. Chem. Soc. 2018, 15, 2175.

    12. [12]

      (a) Fustero, S.; Monteagudo, S.; Sánchez-Roselló, M.; Flores, S.; Barrio, P.; del Pozo, C. Chem.-Eur. J. 2010, 16, 9835.
      (b) Shen, X., Zhao; J., Xi, Y.; Chen, W.; Zhou, Y.; Yang, X.; Zhang, H. J. Org. Chem. 2018, 83, 14507.
      (c) Prasad, K. R.; Rangari, V. A. Tetrahedron 2019, 75, 130496.
      (d) Del Castillo, E.; Muñiz, K. Org. Lett. 2019, 21, 705.

    13. [13]

      Chuang, K. V.; Navarro, R.; Reisman, S. E. Chem. Sci. 2011, 2, 1086.

    14. [14]

      Toop, H. D.; Brusnahan, J. S.; Morris, J. C. Angew. Chem., Int. Ed. 2017, 56, 8536.

    15. [15]

      Liu, H. J.; Shia, K. S.; Shang, X.; Zhu, B. Y. Tetrahedron 1999, 55, 3803.

    16. [16]

      Uphade, M. B.; Reddy, A. A.; Khandare, S. P.; Prasad, K. R. Org. Lett. 2019, 21, 9109.

    17. [17]

      Wang, Y.; He, Q. F.; Wang, H. W.; Zhou, X.; Huang, Z. Y.; Qin, Y. J. Org. Chem. 2006, 71, 1588.

    18. [18]

      Chogii, I.; Njardarson, J. T. Angew. Chem., Int. Ed. 2015, 54, 13706.

    19. [19]

      Chen, W.; Yang, X.; Tan, W.; Zhang, X.; Liao, X.; Zhang, H. Angew. Chem., Int. Ed. 2017, 56, 12327.

    20. [20]

      Chen, W.; Ren, J.; Wang, M.; Dang, L.; Shen, X.; Yang, X.; Zhang, H. Chem. Commun. 2014, 50, 6259.

    21. [21]

      (a) Zhang, S. X.; Shen, X. L.; Li, Z. Q.; Zou, L. W.; Wang, F. Q.; Zhang, H. B.; Shao, Z. H. J. Org. Chem. 2013, 78, 11444.
      (b) Han-ya, Y.; Inui, T.; Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Chem. Pharm. Bull. 2016, 64, 800.

    22. [22]

      Kobayashi, S.; Ueda, T.; Fukuyama, T. Synlett 2000, 883.

    23. [23]

      Al-Saffar, F. M.; Brown, R. C. D. Org. Lett. 2017, 19, 3502.

    24. [24]

      Tang, T. P.; Ellman, J. A. J. Org. Chem. 2002, 67, 7819.

    25. [25]

      (a) Cutter, A. C.; Miller, I. R.; Keily, J. F.; Bellingham, R. K.; Light, M. E.; Brown, R. C. Org. Lett. 2011, 13, 3988.
      (b) Watkin, S. V.; Camp, N. P.; Brown, R. C. Org. Lett. 2013, 15, 4596.

    26. [26]

      (a) Han, Z.; Krishnamurthy, D.; Senanayake, C. H. Org. Process Res. Dev. 2006, 10, 327.
      (b) Tian, M.; Yan, M.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 14234.
      (c) Wang, C.; Liu, Y. W.; Zhou, Z., Si; C. M., Sun, X.; Wei, B. G. Tetrahedron 2018, 74, 2158.
      (d) Hugelshofer, C. L.; Palani, V.; Sarpong, R. J. Am. Chem. Soc. 2019, 141, 8431.

    27. [27]

      Brak, K.; Ellman, J. A. Org. Lett. 2010, 12, 2004.

    28. [28]

      Cai, S. L.; Yuan, B. H.; Jiang, Y. X.; Lin, G. Q.; Sun, X. W. Chem. Commun. 2017, 53, 3520.

    29. [29]

      Chen, Y.-J.; Cai, S.-L.; Wang, C.-C.; Cheng, J.-D.; Kramer, S.; Sun, X.-W. Chem.-Asian J. 2017, 12, 1309.

    30. [30]

      Voituriez, A.; Ferreira, F.; Perezluna, A.; Chemla, F. Org. Lett. 2007, 9, 470.

    31. [31]

      Huang, P. Q.; Guo, Z. Q.; Ruan, Y. P. Org. Lett. 2006, 8, 1435.

    32. [32]

      (a) Voituriez, A.; Ferreira, F.; Chemla, F. J. Org. Chem. 2007, 72, 5358.
      (b) Louvel, J.; Botuha, C.; Chemla, F.; Demont, E.; Ferreira, F.; Pérez-Luna, A. Eur. J. Org. Chem. 2010, 2921.
      (c) Louvel, J.; Chemla, F.; Demont, E.; Ferreira, F.; Pérez-una, A.; Voituriez, A. Adv. Synth. Catal. 2011, 353, 2137.
      (d) Hélal, B.; Ferreira, F.; Botuha, C.; Chemla, F.; Perez-Luna, A. Synlett 2009, 3115.

    33. [33]

      Mei, S.; Zhao, G. Eur. J. Org. Chem. 2010, 1660.

    34. [34]

      Sirasani, G.; Andrade, R. B. Org. Lett. 2011, 13, 4736.

    35. [35]

      González-Gómez, J. C.; Medjahdi, M.; Foubelo, F.; Yus, M. J. Org. Chem. 2010, 75, 6308.

    36. [36]

      Medjahdi, M.; González-Gómez, J. C.; Foubelo, F.; Yus, M. Eur. J. Org. Chem. 2011, 2230.

    37. [37]

      (a) Bosque, I.; González-Gómez, J. C.; Guijarro, A.; Foubelo, F.; Yus, M. J. Org. Chem. 2012, 77, 10340.
      (b) Anton-Torrecillas, C.; González-Gómez, J. C. Org. Biomol. Chem. 2014, 12, 7018.

    38. [38]

      Bonazzi, S.; Cheng, B.; Wzorek, J. S.; Evans, D. A. J. Am. Chem. Soc. 2013, 135, 9338.

    39. [39]

      Shen, A.; Liu, M.; Jia, Z. S.; Xu, M. H.; Lin, G. Q. Org. Lett. 2010, 12, 5154.

    40. [40]

      Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.

    41. [41]

      Zhao, S.; Sirasani, G.; Vaddypally, S.; Zdilla, M. J.; Andrade, R. B. Angew. Chem., Int. Ed. 2013, 52, 8309.

    42. [42]

      Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Shah, R. S.; Thompson, A. L.; Thomson, J. E. Org. Lett. 2014, 16, 1354.

    43. [43]

      Davies, S. G.; Fletcher, A. M.; Shah, R. S.; Roberts, P. M.; Thomson, J. E. J. Org. Chem. 2015, 80, 4017.

    44. [44]

      Ye, J.; Zhang, Y.; Liu, Y.; Zhang, J.; Ruan, Y.; Huang, P. Org. Chem. Front. 2015, 2, 697.

    45. [45]

      (a) Guo, L. D.; Liang, P.; Zheng, J. F.; Huang, P. Q. Eur. J. Org. Chem. 2013, 2230.
      (b) Ye, J. L.; Chen, H.; Zhang, Y. F.; Huang, P. Q. Org. Chem. Front. 2016, 3, 683.

    46. [46]

      Cai, S. L.; Song, R.; Dong, H. Q.; Lin, G. Q.; Sun, X. W. Org. Lett. 2016, 18, 1996.

    47. [47]

      Liu, H.; Zhang, X.; Shan, D.; Pitchakuntla, M.; Ma, Y.; Jia, Y. Org. Lett. 2017, 19, 3323.

    48. [48]

      Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652.

    49. [49]

      (a) Botuha, C.; Chemla, F.; Ferreira, F.; Perez Luna, A.; Roy, B. New J. Chem. 2007, 31, 1552.
      (b) Chemla, F.; Ferreira, F.; Gaucher, X.; Palais, L. Synthesis 2007, 1235.
      (c) Chemla, F.; Ferreira, F. Synlett 2006, 2613.

    50. [50]

      Schkeryantz, J. M.; Woo, J. C. G.; Siliphaivanh, P.; Depew, K. M.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11964.

    51. [51]

      Bonazzi, S.; Cheng, B.; Wzorek, J. S.; Evans, D. A. J. Am. Chem. Soc. 2013, 135, 9338.

    52. [52]

    53. [53]

      Zhang, L.; Zhang, Y.; Li, W.; Qi, X. Angew. Chem., Int. Ed. 2019, 58, 4988.

    54. [54]

      (a) Chen, B.; Liu, X.; Hu, Y.-J.; Zhang, D.-M.; Deng, L.; Lu, J.; Min, L.; Ye, W.-C.; Li, C.-C. Chem. Sci. 2017, 8, 4961.
      (b) Ryan, D. A.; Okolotowicz, K. J.; Mercola, M.; Cashman, J. R. Tetrahedron Lett. 2015, 56, 4195.
      (c) Zhu, Y.; Li, H.; Lin, K.; Wang, B.; Zhou, W. Synth. Commun. 2019, 49, 1721.

    55. [55]

      Zhong, Y.-W.; Dong, Y.-Z.; Fang, K.; Izumi, K.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2005, 127, 11956.

    56. [56]

      Wang, R.; Fang, K.; Sun, B.-F.; Xu, M.-H.; Lin, G.-Q. Synlett 2009, 2301.

    57. [57]

      Si, C.-M.; Liu, Y.-W.; Mao, Z.-Y.; Han, P.; Du, Z.-T.; Wei, B.-G. Tetrahedron 2016, 72, 8091.

    58. [58]

      (a) Liu, R. C.; Wei, J. H.; Wei, B. G.; Lin, G. Q. Tetrahedron: Asymmetry 2008, 19, 2731.
      (b) Xarnod, C.; Huang, W.; Ren, R. G.; Liu, R. C.; Wei, B. G. Tetrahedron 2012, 68, 6688.
      (c) Zhou, W.; Nie, X.-D.; Zhang, Y.; Si, C.-M.; Zhou, Z.; Sun, X.; Wei, B.-G. Org. Biomol. Chem. 2017, 15, 6119.

    59. [59]

      Kochi, T.; Ellman, J. A. J. Am. Chem. Soc. 2004, 126, 15652.

    60. [60]

      Peltier, H. M.; Mcmahon, J. P.; Patterson; A, W.; Ellman, J. A. J. Am. Chem. Soc. 2006, 128, 16018.

    61. [61]

      Nicolaou, K. C.; Estrada, A. A.; Zak, M.; Lee, S. H.; Safina, B. S. Angew. Chem., Int. Ed. 2005, 44, 1378.

    62. [62]

      Zhao, S.; Andrade, R. B. J. Am. Chem. Soc. 2013, 135, 13334.

    63. [63]

      Wang, X.; Xia, D.; Tan, L.; Chen, H.; Huang, H.; Song, H.; Qin, Y. Chem.-Eur. J. 2015, 21, 14602.

    64. [64]

      Kokkonda, P.; Andrade, R. B. Org. Lett. 2019, 21, 9594.

    65. [65]

      Amat, M.; Alvarez, M.; Bonjoch, J.; Casamitjana, N.; Gràcia, J.; Lavilla, R.; Garcías, X.; Bosch, J. Tetrahedron Lett. 1990, 31, 3453.

    66. [66]

      (a) Kazak, M.; Priede, M.; Shubin, K.; Bartrum, H. E., Poisson, J. F.; Suna, E. Org. Lett. 2017, 19, 5356.
      (b) Jung, H. H.; Floreancig, P. E. J. Org. Chem. 2007, 72, 7359.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    7. [7]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    12. [12]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    13. [13]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    14. [14]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(660)
  • Abstract views(10513)
  • HTML views(3997)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return