Citation: Zhang Gaopeng, Jiang Yangjie, Ding Changhua, Hou Xuelong. Palladium-Catalyzed Allylic Alkylation Reaction of α-Substituted Benzyl Nitriles with Branched Allyl Carbonates[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3399-3409. doi: 10.6023/cjoc202006007 shu

Palladium-Catalyzed Allylic Alkylation Reaction of α-Substituted Benzyl Nitriles with Branched Allyl Carbonates

  • Corresponding author: Ding Changhua, dingchanghua@shu.edu.cn Hou Xuelong, xlhou@sioc.ac.cn
  • Received Date: 5 June 2020
    Revised Date: 23 June 2020
    Available Online: 30 June 2020

    Fund Project: the National Natural Science Foundation of China 21532010the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20030100the National Natural Science Foundation of China 21772215Project supported by the National Natural Science Foundation of China (Nos. 21532010, 21772215), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20030100), the Chinese Academy of Sciences, the Technology Commission of Shanghai Municipality, and the Croucher Foundation of Hong Kong

Figures(4)

  • Pd-catalyzed allylic alkylation reaction of α-substituted benzyl nitriles with branched allyl carbonates in the presence of bulkier N-heterocyclic carbene ligand was reported, which provided the corresponding allylated products in good yield with high regio- and diastereo-selectivity.
  • 加载中
    1. [1]

      (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387.
      (b) Trost, B. M. J. Org. Chem. 2004, 69, 5813.
      (c) Trost, B. M. Org. Process Res. Dev. 2012, 16, 185.

    2. [2]

      (a) Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric Catalysis, Vol. 2, Eds.: Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Springer- Verlag, Berlin, 1999, p. 833.
      (b) Trost, B. M. Chem. Rev. 1996, 96, 395.
      (c) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
      (d) Ding, C.-H.; Hou, X.-L. In Comprehensive Organic Synthesis, 2nd ed., Vol. 4, Eds.: Molander, G. A.; Knochel, P., Elsevier, Oxford, 2014, p. 648.
      (e) Zhang, J.-L.; Jiang, G.-X. Acta Chim. Sinica 2018, 76, 890.

    3. [3]

      (a) Hegedus, L. S.; Darlington, W. H.; Russell, C. E. J. Org. Chem. 1980, 45, 5193.
      (b) Hoffmann, H. M. R.; Otte, A. R.; Wilde, A. Angew. Chem., Int. Ed. 1992, 31, 234.
      (c) Hoffmann, H. M. R.; Otte, A. R.; Wilde, A.; Menzer, S.; Williams, D. J. Angew. Chem., Int. Ed. 1995, 34, 100.

    4. [4]

      (a) Hayashi, T.; Konishi, M.; Yokota, K.; Kumada, M. J. Organomet. Chem. 1985, 285, 359.
      (b) Tsuji, Y.; Kusui, T.; Kojima, T.; Sugiura, Y.; Yamada, N.; Tanaka, S.; Ebihara, M.; Kawamura, T. Organometallics 1998, 17, 4835.
      (c) Zhang, P.; Brozek, L. A.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 10686.
      (d) Le, H.; Batten, A.; Morken, J. P. Org. Lett. 2014, 16, 2096.
      (e) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044.
      (f) Li, Y.-X.; Xuan, Q.-Q.; Liu, L.; Wang, D.; Chen, Y.-J.; Li, C.-J. J. Am. Chem. Soc. 2013, 135, 12536.
      (g) Chen, J.-P.; Peng, Q.; Lei, B.-L.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2011, 133, 14180.
      (h) Bai, D.-C.; Yu, F.-L.; Wang, W.-Y.; Chen, D.; Li, H.; Liu, Q.-R.; Ding, C.-H.; Chen, B.; Hou, X.-L. Nat. Commun. 2016, 7, 11806.
      (i) Yu, F.-L.; Bai, D.-C.; Liu, X.-Y.; Jiang, Y.-J.; Ding, C.-H.; Hou, X.-L. ACS Catal. 2018, 8, 3317.

    5. [5]

      (a) Trost, B. M.; Keinan, E. Tetrahedron Lett. 1980, 21, 2591.
      (b) Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999, 121, 6759.
      (c) Braun, M.; Laicher, F.; Meier, T. Angew. Chem., Int. Ed. 2000, 39, 3494.
      (d) Yan, X.-X.; Liang, C.-G.; Zhang, Y.; Hong, W.; Cao, B.-X.; Dai, L.-X.; Hou, X.-L. Angew. Chem., Int. Ed. 2005, 44, 6544.
      (e) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 7718.
      (f) Zhang, K.; Peng, Q.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2008, 47, 1741.
      (g) Chen, J.-P.; Ding, C.-H.; Liu, W.; Hou, X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2010, 132, 15493.
      (h) Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
      (i) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092.
      (j) Sha, S.-C.; Zhang, J.-D.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2013, 135, 17602.

    6. [6]

      (a) Tsuji, J.; Shimizu, I.; Minami, I.; Ohashi, Y. J. Org. Chem. 1985, 50, 1523.
      (b) Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309.
      (c) Evans, P. A.; Oliver, S.; Chae, J. J. Am. Chem. Soc. 2012, 134, 19314.
      (d) Maji, T.; Tunge, J. K. Org. Lett. 2014, 16, 5072.
      (e) Turnbull, B. W. H.; Evans, P. A. J. Am. Chem. Soc. 2015, 137, 6156.
      (f) Turnbull, B. W. H.; Oliver, S.; Evans, P. A. J. Am. Chem. Soc. 2015, 137, 15374.

    7. [7]

      (a) Bai, D.-C.; Liu, X.-Y.; Li, H.; Ding, C.-H.; Hou, X.-L. Chem. Asian J. 2017, 12, 212.
      (b) Zhang, G.-P.; Huang S.; Jiang, Y.-J.; Liu, X.-Y.; Ding, C.-H.; Wei, Y.; Hou, X.-L. Chem. Commun. 2019, 55, 6449.

    8. [8]

      Poli, G.; Prestat, G.; Liron, F.; Kammerer-Pentier, C. Top. Organomet. Chem. 2012, 38, 1.

    9. [9]

      (a) Tsuji, Y.; Kusui, T.; Kojima, T.; Sugiura, Y.; Yamada, N.; Tanaka, S.; Ebihara, M.; Kawamura. T. Organometallics 1998, 17, 4835.
      (b) Bai, D. C.; Wang, W. Y.; Ding, C. H.; Hou, X. L. Synlett 2015, 26, 1510.

    10. [10]

      Triandafillidi, I.; Kokotou, M. G.; Kokotos, C. G. Org. Lett. 2018, 20, 36.  doi: 10.1021/acs.orglett.7b03256

    11. [11]

      (a) Yuan, Q.-J.; Yao, K.; Liu, D.-L.; Zhang, W.-B. Chem. Commun. 2015, 51, 11834.
      (b) Hayashi, M.; Brown, L. E.; Porco, Jr. J. A. Eur. J. Org. Chem. 2016, 4800.

  • 加载中
    1. [1]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    10. [10]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    11. [11]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    12. [12]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    17. [17]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    18. [18]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(5)
  • Abstract views(1113)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return