Citation: Han Man-Yi, Pan Hong, Yao Ziyun, Li Qi. n-Bu4NBr Catalyzed Brook Rearrangement/Alkylation Reaction[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4274-4283. doi: 10.6023/cjoc202005093 shu

n-Bu4NBr Catalyzed Brook Rearrangement/Alkylation Reaction

  • Corresponding author: Han Man-Yi, hanmy10@126.com
  • Received Date: 31 May 2020
    Revised Date: 11 July 2020
    Available Online: 5 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21602073), the Natural Science Foundation of Anhui Province (No. 1708085QB39) and the Young Scholars in Wanjiang Scholars Program of Anhui Provincethe Natural Science Foundation of Anhui Province 1708085QB39the National Natural Science Foundation of China 21602073

Figures(4)

  • A novel Brook rearrangement/alkylation reaction sequence of tertiary α-silyl alcohols has been developed using n-Bu4NBr as the phase transfer catalyst (PTC). A number of tertiary α-silyl alcohols are applicable to the reaction, affording the products with a quaternary carbon center in high yields (up to 71%). Moreover, the carbanions generated after the Brook rearrangement could be stabilized by the electron-withdrawing group, depressing the Brook rearrangement/protonation reaction.
  • 加载中
    1. [1]

      Brook, A. G. J. Am. Chem. Soc. 1958, 80, 1886.  doi: 10.1021/ja01541a026

    2. [2]

      For selected reviews, see: (a) Lee, N.; Tan, C.-H. Asian J. Org. Chem. 2019, 8, 25.
      (b) Yabushita, K.; Yuasa, A.; Nagao, K.; Ohmiya, H. J. Am. Chem. Soc. 2019, 141, 113.
      (c) Eppe, G.; Didier, D.; Marek, I. Chem. Rev. 2015, 115, 9175.
      (d) Zhang, H. -J.; Priebbenow, D. L.; Bolm, C. Chem. Soc. Rev. 2013, 42, 8540.
      (e) Boyce, G. R.; Greszler, S. N.; Johnson, J. S.; Linghu, X.; Malinowski, J. T.; Nicewicz, D. A.; Satterfield, A. D.; Schmitt, D. C.; Steward, K. M. J. Org. Chem. 2012, 77, 4503.
      (f) Smith, Ⅲ, A. B., Wuest, W. M. Chem. Commun. 2008, 45, 5883.
      (g) Moser, W. H. Tetrahedron 2001, 57, 2065.
      (h) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. J. Organomet. Chem. 1998, 567, 181.
      (i) Bulman-Page, P. C.; Klair, S. S.; Rosenthal, S. Chem. Soc. Rev. 1990, 19, 147.
      (j) Brook, A. G. Acc. Chem. Res. 1974, 7, 77.

    3. [3]

      Greszler, S. N.; Johnson, J. S. Org. Lett. 2009, 11, 827.  doi: 10.1021/ol802828d

    4. [4]

      Greszler, S. N.; Johnson, J. S. Angew. Chem., Int. Ed. 2009, 48, 3689.  doi: 10.1002/anie.200900215

    5. [5]

      For selected examples, see: (a) Yao, M.; Lu, C.-D. Org. Lett. 2011, 13, 2782.
      (b) Han, X.-J.; Yao, M.; Lu, C.-D. Org. Lett. 2012, 14, 2906.

    6. [6]

      Luzzio, F. A. Tetrahedron 2001, 57, 915.  doi: 10.1016/S0040-4020(00)00965-0

    7. [7]

      For selected reviews and examples, see: (a) Adero, P. O.; Amarasekara, H.; Wen. P.; Bohé L.; Crich, D. Chem. Rev. 2018, 118, 8242.
      (b) Hamlin, T. A.; Swart, M. F.; Bickelhaupt, M. ChemPhysChem 2018, 19, 1315.
      (c) Fu, G. C. ACS Cent. Sci. 2017, 3, 692.
      (d) Phan, T. B.; Nolte, C.; Kobayashi, S.; Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2009, 131, 11392.
      (e) Marshall, J. A. Chem. Rev. 1989, 89, 1503.

    8. [8]

      Kato, M.; Mori, A.; Oshino, H.; Enda, J.; Kobayashi, K.; Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 1773.  doi: 10.1021/ja00318a036

    9. [9]

      Collados, J. F.; Ortiz, P.; Perez, J. M.; Xia, Y.; Koenis, M. A. J.; Buma, W. J.; Nicu, V. P.; Harutyunyan, S. R. Eur. J. Org. Chem. 2018, 2018, 3900.

    10. [10]

      For selected reviews and examples, see: (a) Collados, J. F.; Ortiz, P.; Harutyunyan, S. R. Eur. J. Org. Chem. 2016, 3065.
      (b) Leibeling, M.; Shurrush, K. A.; Werner, V.; Perrin, L.; Marek, I. Angew. Chem., Int. Ed. 2016, 55, 6057.

    11. [11]

      For selected reviews and examples, see: (a) Zong, L.; Tan, C.-H. Acc. Chem. Res. 2017, 50, 842.
      (b) Albanese, D. C. M.; Foschi, F.; Penso, M. Org. Process Res. Dev. 2016, 20, 129.
      (c) Kaneko, S.; Kumatabara, Y.; Shirakawa, S. Org. Biomol. Chem. 2016, 14, 5367.
      (d) Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312.
      (e) Takeda, K.; Ohnishi, Y. Tetrahedron Lett. 2000, 41, 4169.
      (f) Ando, M.; Sasaki, M.; Miyashita, I.; Takeda, K. J. Org. Chem. 2015, 80, 247.

    12. [12]

      For selected examples, see: (a) Han, M.-Y.; Pan, H.; Li, P.; Wang, L. J. Org. Chem. 2020, 85, 5825.
      (b) Pan, H.; Han, M.-Y.; Li, P.; Wang, L. J. Org. Chem. 2019, 84, 14281.
      (c) Han, M.-Y.; Luan, W.-Y.; Mai, P.-L.; Li, P.; Wang, L. J. Org. Chem. 2018, 83, 1518.
      (d) Han, M.-Y.; Lin, J.; Li, W.; Luan, W.-Y.; Mai, P.-L.; Zhang, Y. Green Chem. 2018, 20, 1228.
      (e) Han, M.-Y.; Pan, H.; Lin, J.; Li, W.; Li, P.; Wang, L. Org. Biomol. Chem. 2018, 16, 4117.
      (f) Han, M.-Y.; Xie, X.; Zhou, D.; Li, P.; Wang, L. Org. Lett. 2017, 19, 2282.
      (g) Han, M.-Y.; Yang, F.-Y.; Zhou, D.; Xu, Z. Org. Biomol. Chem. 2017, 15, 1418.

    13. [13]

      For selected examples, see: (a) Deng, Y.; Liu, Q.; Smith, Ⅲ, A. B. J. Am. Chem. Soc. 2017, 139, 9487.
      (b) Zhang, F.-G.; Marek, I. J. Am. Chem. Soc. 2017, 139, 8364.
      (c) Zhang, H.; Ma, S.; Yuan, Z.; Chen, P.; Xie, X.; Wang, X.; She, X. Org. Lett. 2017, 19, 3478.
      (d) Lin, C.-Y.; Sun, Z.; Xu, Y.-J.; Lu, C.-D. J. Org. Chem. 2015, 80, 3714.
      (e) Liu, B.; Lu, C. D. J. Org. Chem. 2011, 76, 4205.
      (f) Smith, Ⅲ, A. B.; Xian, M.; Kim, W.-S.; Kim, D.-S. J. Am. Chem. Soc. 2006, 128, 12368.
      (g) Jung, M. E.; Nichols, C. J. J. Org. Chem. 1996, 61, 9065.

  • 加载中
    1. [1]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    2. [2]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    3. [3]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    4. [4]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    5. [5]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    6. [6]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    7. [7]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    8. [8]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    9. [9]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    10. [10]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    11. [11]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    12. [12]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    13. [13]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    14. [14]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    15. [15]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    16. [16]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    17. [17]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    18. [18]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    19. [19]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    20. [20]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

Metrics
  • PDF Downloads(35)
  • Abstract views(3084)
  • HTML views(403)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return