Citation: Ding Yuxin, Ma Yongmin, Chen Jing. Novel Three-Component Annulation for the Synthesis of 2, 4, 6-Triaryl-pyrimidines under Solvent-Free and Catalyst-Free Conditions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4357-4363. doi: 10.6023/cjoc202005078 shu

Novel Three-Component Annulation for the Synthesis of 2, 4, 6-Triaryl-pyrimidines under Solvent-Free and Catalyst-Free Conditions

  • Corresponding author: Ma Yongmin, yongmin.ma@tzc.edu.cn Chen Jing, cjmaggie@163.com
  • Received Date: 28 May 2020
    Revised Date: 28 June 2020
    Available Online: 22 July 2020

    Fund Project: the Natural Science Foundation of Zhejiang Province LY19H300001the "Teacher Professional Development Project" for Domestic Visitors of Institutions of Higher Learning in 2019 FX2019020Project supported by the Natural Science Foundation of Zhejiang Province (No. LY19H300001), the Zhejiang Chinese Medicinal University Foundation (No. 2018ZG31) and the "Teacher Professional Development Project" for Domestic Visitors of Institutions of Higher Learning in 2019 (No. FX2019020)the Zhejiang Chinese Medicinal University Foundation 2018ZG31

Figures(4)

  • 2, 4, 6-Triarylpyrimidines were synthesized via a simple, efficient, one-pot, three-component reaction from 1, 3-dikeones, benzaldehydes and ammonium acetate under solvent-free and catalyst-free conditions in good to excellent yields. This "green" methodology provides an eco-friendly protocol for the construction of the pyrimidine framework.
  • 加载中
    1. [1]

      (a) Santos, M. F. C.; Harper, P. M.; Williams, D. E.; Mesquita, J. T.; Pinto, É. G.; da Costa-Silva, T. A.; Hajdu, E.; Ferreira, A. G.; Santos, R. A.; Murphy, P. J. J. Nat. Prod. 2015, 78, 1101.
      (b) Pettit, G. R.; Tang, Y.; Zhang, Q.; Bourne, G. T.; Hooper, J. N. A. J. Nat. Prod. 2013, 76, 420.

    2. [2]

      (a) Hou, J.; Wan, S.; Wang, G.; Zhang, T.; Li, Z.; Tian, Y.; Yu, Y.; Wu, X.; Zhang, J. Eur. J. Med. Chem. 2016, 118, 276.
      (b) Agarwal, A.; Srivastava, K.; Puri, S. K.; Chauhan, P. M. S. Bioorg. Med. Chem. 2005, 13, 4645.
      (c) Parker, W. B. Chem. Rev. 2009, 109, 2880.
      (d) Shipe, W. D.; Sharik, S. S.; Barrow, J. C.; McGaughey, G. B.; Theberge, C. R.; Uslaner, J. M.; Yan, Y.; Renger, J. J.; Smith, S. M.; Coleman, P. J.; Cox, C. D. J. Med. Chem. 2015, 58, 7888.
      (e) Johar, M.; Manning, T.; Kunimoto, D. Y.; Kumar, R. Bioorg. Med. Chem. 2005, 13, 6663.
      (f) Agarwal, A.; Srivastava, K.; Puri, S. K.; Chauhan, P. M. S. Bioorg. Med. Chem. Lett. 2005, 15, 1881.
      (g) Guo, Y.; Li, J.; Ma, J.; Yu, Z.; Wang, H.; Zhu, W.; Liao, X.; Zhao, Y. Chin. Chem. Lett. 2015, 26, 755.
      (h) Chen, W.; Li, Y.; Zhou, Y.; Ma, Y.; Li, Z. Chin. Chem. Lett. 2019, 30, 2160.
      (i) Shao, K.; Zhang, X.; Zhang, X.; Xue, D.; Ma, L.; Zhang, Q.; Liu, H. Chin. J. Chem. 2014, 32, 443.

    3. [3]

      (a) Undheim, K.; Benneche, T. In Comprehensive Heterocyclic Chemistry II, Vol. 6, Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. V. F., Pergamon Press, London, 1996, p. 93.
      (b) Brown, D. J.; Evans, R. F.; Cowden, W. B. In The Pyrimidines, Vol. 52, Eds.: Taylor, E. C.; Weissberger, A., John Wiley, New York, 1994.

    4. [4]

      (a) Gompper, R.; Mair, H.-J.; Polborn, K. Synthesis 1997, 696.
      (b) Bassani, D. M.; Lehn, J. A.; Baum, G.; Fenske, D. Angew. Chem., Int. Ed. 1997, 36, 1845.
      (c) Zhao, F.; Zhao, X.; Peng, B.; Gan, F.; Yao, M.; Tan, W.; Dong, J.; Zhang, Q. Chin. Chem. Lett. 2018, 29, 1692.

    5. [5]

      (a) Wong, K.-T.; Hung, T. S.; Lin, Y.; Wu, C.-C.; Lee, G.-H.; Peng, S.-M.; Chou, C. H.; Su, Y. O. Org. Lett. 2002, 4, 513.
      (b) Li, L.; Fang, Y.; Chen, H.; Zhang, Y. Chin. J. Chem. 2012, 30, 1144.

    6. [6]

      (a) Harriman, A.; Ziessel, R. Coord. Chem. Rev. 1998, 171, 331.
      (b) Harriman, A.; Ziessel, R. Chem. Commun. 1996, 32, 1707.

    7. [7]

      (a) Dodson, R. M.; Seyler, J. K. J. Org. Chem. 1951, 16, 461.
      (b) Guo, W. Chin. Chem. Lett. 2016, 27, 47.
      (c) Chu, X. Q.; Cao, W.-B.; Xu, X.-P.; Ji, S.-J. J. Org. Chem. 2017, 82, 1145.

    8. [8]

      Yuan, J.; Li, J.; Wang, B.; Sun, S.; Cheng, J. Tetrahedron Lett. 2017, 58, 4783.  doi: 10.1016/j.tetlet.2017.11.020

    9. [9]

      Wang, P.; Zhang, X.; Liu, Y.; Chen, B. Asian J. Org. Chem. 2019, 8, 1122.  doi: 10.1002/ajoc.201900248

    10. [10]

      (a) Deibl, N.; Ament, K.; Kempe, R. J. Am. Chem. Soc. 2015, 137, 12804.
      (b) Bule, M. H.; Esfandyari, R.; Tafesse, T. B.; Amini, M.; Faramarzi, M. A.; Abdollahi, M. J. Chem. Pharm. Res. 2019, 11, 27
      (c) Shi, T.; Qin, F.; Q. Zhang, Li, W. Org. Biomol. Chem. 2018, 16, 9487.

    11. [11]

      Liu, D.; Guo, W.; Wu, W.; Jiang, H. J. Org. Chem. 2017, 82, 13609.  doi: 10.1021/acs.joc.7b02113

    12. [12]

      (a) Martínez, A. G.; Fernandez, A. H.; Alvarez, R. M.; Losada, M. C. S.; Vilchez, D. M.; Subramanian, L. R.; Hanack, M. Synthesis 1990, 881.
      (b) Fuji, M.; Obora, Y. Org. Lett. 2017, 19, 5569.
      (c) Su, L.; Sun, K.; Pan, N.; Liu, L.; Yin, S. F. Org. Lett. 2018, 20, 3399.

    13. [13]

      Schomaker, J. M.; Delia, T. J. J. Org. Chem. 2001, 66, 7125.  doi: 10.1021/jo010573+

    14. [14]

      Adib, M.; Mahmoodi, N.; Mahdavi, M.; Bijanzadeh, H. R. Tetrahedron Lett. 2006, 47, 9365.  doi: 10.1016/j.tetlet.2006.10.090

    15. [15]

      Seki, M.; Kubota, H.; Matsumoto, K.; Kinumaki, A.; Date, T.; Okamura, K. J. Org. Chem. 1993, 58, 6354.  doi: 10.1021/jo00075a032

    16. [16]

      Heravi, M. M.; Sadjadi, S.; Oskooie, H. A.; Shoar, R. H.; Bamoharram, F. F. Tetrahedron Lett. 2009, 50, 662.  doi: 10.1016/j.tetlet.2008.11.105

    17. [17]

      Ding, Y. X.; Ma, R. C.; Hider, R. C.; Ma, Y. M. Asian J. Org. Chem. 2020, 9, 242.  doi: 10.1002/ajoc.201900700

    18. [18]

      Itami, K.; Yamazaki, D.; Yoshida, J. J. Am. Chem. Soc. 2004, 126, 15396.  doi: 10.1021/ja044923w

    19. [19]

      Komatsu, R.; Nakao, K.; Sasabe, H.; Komatsu, R.; Hayasaka, Y.; Ohsawa, T.; Kido, J. J. Adv. Opt. Mater. 2017, 5, 1600675.  doi: 10.1002/adom.201600675

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(53)
  • Abstract views(2601)
  • HTML views(310)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return