Citation: Teng Qiaoling, Xu Lulu, Cheng Dongping, Xu Xiaoliang. Synthesis of 10-Phenanthrenol Derivatives via Visible Light Catalyzed Itramolecular Cycloaromatization[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4258-4266. doi: 10.6023/cjoc202005077 shu

Synthesis of 10-Phenanthrenol Derivatives via Visible Light Catalyzed Itramolecular Cycloaromatization

  • Corresponding author: Cheng Dongping, chengdp@zjut.edu.cn Xu Xiaoliang, xuxiaoliang@zjut.edu.cn
  • Received Date: 28 May 2020
    Revised Date: 21 July 2020
    Available Online: 5 August 2020

    Fund Project: the National Natural Science Foundation of China 21602197the Zhejiang Provincial Natural Science Foundation LY18B020018Project supported by the Zhejiang Provincial Natural Science Foundation (Nos. LY18B020018, LY15B020004) and the National Natural Science Foundation of China (No. 21602197)the Zhejiang Provincial Natural Science Foundation LY15B020004

Figures(2)

  • Phenanthrene derivatives play an important role in pharmaceutical chemistry and material science. Due to its advantages of green, mild reaction conditions and great application potential, visible light catalysis has become a powerful tool in organic synthesis. In this paper, under the catalysis of photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6, a series of 10-phenanthrenol derivatives were synthesized from 2-arylbenzoyl acetate derivatives in moderate to good yields through intramolecular cycloaromatization. In addition, the plausible reaction mechanism was also proposed.
  • 加载中
    1. [1]

      (a) Floyd, A. J.; Dyke, S. F.; Ward, S. E. Chem. Rev. 1976, 76, 509.
      (b) Kovács, A.; Vasas, A.; Hohmann, J. Phytochemistry 2008, 69, 1084.
      (c) Narita, A.; Wang, X.; Feng, X.; Mullen, K. Chem. Soc. Rev. 2015, 44, 6616.

    2. [2]

      (a) De Alvarenga, M. A.; Gottlieb, O. R.; Magalhaes, M. T. Phytochemistry 1976, 15, 844.
      (b) Pettit, G. R.; Singh, S. B.; Niven, M. L.; Schmidt, J. M. Can. J. Chem. 1988, 66, 406.
      (c) Cragg, G. M.; Newman, D. J. J. Nat. Prod. 2004, 67, 232.

    3. [3]

      (a) Huffman, C. W.; Traxler, J. T.; Krbechek, L. O.; Riter, R. R.; Wagner, R. G. J. Med. Chem. 1971, 14, 90.
      (b) Colwell, W. T.; Brown, V.; Christie, P.; Lange, J.; Reece, C.; Yamamoto, K.; Henry, D. W. J. Med. Chem. 1972, 15, 771.

    4. [4]

      Matsuda, H.; Morikawa, T.; Xie, H.; Yoshikawa, M. Planta Med. 2004, 70, 847.  doi: 10.1055/s-2004-827234

    5. [5]

      (a) Fisch, M. H.; Flick, B. H.; Arditti, J. Phytochemistry 1973, 12, 437.
      (b) Yamaki, M.; Bai, L.; Inoue, K.; Takagi, S. Phytochemistry 1989, 28, 3503.

    6. [6]

      (a) Mitsuhashi, R.; Suzuki, Y.; Yamanari, Y.; Mitamura, H.; Kambe, T.; Ikeda, N.; Okamoto, H.; Fujiwara, A.; Yamaji, M.; Kawasaki, N.; Maniwa, Y.; Kubozono, Y. Nature 2010, 464, 76.
      (b) Lewis, F. D.; Burch, E. L. J. Phys. Chem. 1996, 100, 4055.
      (c) Machado, A. M.; Munaro, M.; Martins, T. D.; Dávila, L. Y. A.; Giro, R.; Caldas, M. J.; Atvars, T. D. Z.; Akcelrud, L. C. Macromolecules 2006, 39, 3398.
      (d) Matsuo, Y.; Sato, Y.; Hashiguchi, M.; Matsuo, K.; Nakamura, E. Adv. Funct. Mater. 2009, 19, 2224.

    7. [7]

      (a) Yadav, A. K.; Ila, J.; Junjappa, H. Eur. J. Org. Chem. 2010, 2010, 338.
      (b) Gupta, V.; Rao, V. U. B.; Das, T.; Vanka, K.; Singh, R. P. J. Org. Chem. 2016, 81, 5663.
      (c) Gupta, V.; Pandey, S. K.; Singh, R. P. Org. Biomol. Chem. 2018, 16, 7134.

    8. [8]

      (a) Bogert, M. T. Science 1933, 77, 289.
      (b) Floyd, A. J.; Dyke, S. F.; Ward, S. E. Chem. Rev. 1976, 76, 509.

    9. [9]

      (a) Almeida, J. F.; Castedo, L.; Fernández, D.; Neo, A. G.; Romero, V.; Tojo, G. Org. Lett. 2003, 5, 4939.
      (b) Kang, Y.; Wang, T.; Liang, Y.; Zhang, Y.; Wang, R.; Zhang, Z. RSC Adv. 2017, 7, 44333.
      (c) Kang, T.; Zhang, W.; Wang, T.; Liang, Y.; Zhang, Z. J. Org. Chem. 2019, 84, 12387.
      (d) Neo, A. G.; López, C.; Romero, V.; Antelo, B.; Delamano, J.; Pérez, A.; Fernandez, D.; Almeida, J. E.; Castedo, L.; Tojo, G. J. Org. Chem. 2010, 75, 6764.

    10. [10]

      (a) Mallory, F. B.; Wood, C. S.; Gordon, J. T. J. Am. Chem. Soc. 1964, 86, 3094.
      (b) Wood, C. S.; Mallory, F. B. J. Org. Chem. 1964, 29, 3373.
      (c) Matsushima, T.; Kobayashi, S.; Watanabe, S. J. Org. Chem. 2016, 81, 7799.

    11. [11]

      Harrowven, D. C.; Nunn, M. I. T.; Fenwick, D. R. Tetrahedron Lett. 2002, 43, 3185.  doi: 10.1016/S0040-4039(02)00505-1

    12. [12]

      Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2012, 51, 5714.  doi: 10.1002/anie.201201374

    13. [13]

      (a) McMurry, J. E. Acc. Chem. Res. 1983, 16, 405.
      (b) McMurry J. E. Chem. Rev. 1989, 89, 1513.
      (c) Gies, A. E.; Pfeffer, M. J. Org. Chem. 1999, 64, 3650.

    14. [14]

      (a) Iuliano, A.; Piccioli, P.; Fabbri, D. Org. Lett. 2004, 6, 3711.
      (b) Donohoe, T. J.; Orr, A. J.; Bingham, M. Angew. Chem., Int. Ed. 2006, 45, 2664.
      (c) McAtee, C. C.; Riehl, P. S.; Schindler, C. S. J. Am. Chem. Soc. 2017, 139, 2960.

    15. [15]

      Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. 1997, 6, 7536.
      (b) Matsumoto, A.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 6557.
      (c) Yan, J.; Yoshikai, N. Org. Lett. 2017, 19, 6630.

    16. [16]

      Gou, B.; Yang, H.; Sun, H.; Chen, J.; Wu, J.; Zhou, L. Org. Lett. 2019, 21, 80.
      (b) Yao, T.; Zhang, H.; Zhao, Y. Org. Lett. 2016, 18, 2532.
      (c) Song, J.; Wang, S.; Sun, H.; Fan, Y.; Xiao, K.; Qian, Y. Org. Biomol. Chem. 2019, 17, 3328.
      (d) Iwasaki, M.; Araki, Y.; Nishihara, Y. J. Org. Chem. 2017, 82, 6242.

    17. [17]

      Liu, Y.; Chen, L.; Wang, Z.; Liu, P.; Liu, Y.; Dai, B. J. Org. Chem. 2019, 84, 204.  doi: 10.1021/acs.joc.8b02605

    18. [18]

      (a) Liu, W.; Zhang, Y.; Guo, H. J. Org. Chem. 2018, 83, 10518.
      (b) Yao, T.; Campo, M. A.; Larock, R. C. J. Org. Chem. 2005, 70, 3511.

    19. [19]

      (a) Xuan, J.; Xiao, W. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (b) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
      (c) Dai, C.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2011, 3, 140.
      (d) Uygur, M.; Danelzik, T.; Mancheño, O. G. Chem. Commun. 2019, 55, 2980.
      (e) Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349.
      (f) Chen, Y.; Lu, L.; Yu, D.; Zhu, C.; Xiao, W. Sci. China Chem. 2019, 62, 24.
      (g) Goddard, J. P.; Ollivier, C.; Fensterbank, L. Acc. Chem. Res. 2016, 49, 1924.
      (h) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
      (i) Zhang, H.; Lei, A. Asian J. Org. Chem. 2018, 7, 1164.
      (j) Yu, X.; Zhao, Q.; Chen, J.; Xiao, W.; Chen, J. Acc. Chem Res. 2020, 53, 1066.
      (k) Yang, X.; Guo, J.; Xiao, H.; Feng, K.; Chen, B.; Tung, C.; Wu, L. Angew. Chem. Int. Ed. 2020, 59, 5365.
      (l) Zhang, Q.; Xiong, Q.; Li, M.; Xiong, W.; Shi, B.; Lan, Y.; Lu, L.; Xiao, W. Angew. Chem. Int. Ed. 2020, DOI: 10.1002/anie.202005313

    20. [20]

      Jiang, Y.; Yu, Z.; Zhang, Y.; Wang, B. Org. Lett. 2018, 20, 3728.  doi: 10.1021/acs.orglett.8b01160

    21. [21]

      (a) Dai, X.; Cheng, D.; Guan, B.; Mao, W.; Xu, X.; Li, X. J. Org. Chem. 2014, 79, 7212.
      (b) Dai, X.; Mao, R.; Guan, B.; Xu, X.; Li, X. RSC Adv. 2015, 5, 55290.
      (c) Guan, B.; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2016, 36, 1564.
      (d) Ye, Q.; Ye, H.; Cheng, D.; Li, X.; Xu, X. Tetrahedron Lett. 2018, 59, 2546.
      (e) Ye, H.; Ye, Q.; Cheng, D.; Li, X.; Xu, X. Tetrahedron Lett. 2018, 59, 2046.
      (f) Ye, H.; Zhao, H.; Ren, S.; Ye, H.; Cheng, D.; Li, X.; Xu, X. Tetrahedron Lett. 2019, 60, 1302.

    22. [22]

      Becker, P.; Duhamel, T.; Stein, C. J.; Reiher, M.; Muñiz, K. Angew. Chem. Int. Ed. 2017, 56, 8004.  doi: 10.1002/anie.201703611

    23. [23]

      Uyanik, M.; Hayashi, H.; Ishihara, K. Science 2014, 345, 291.  doi: 10.1126/science.1254976

    24. [24]

      (a) Fürstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264.
      (b) Jiang, Y.; Chen, X.; Zheng, Y.; Xue, Z.; Shu, C.; Yuan, W.; Zhang, X. Angew. Chem. Int. Ed. 2011, 50, 7304.

    25. [25]

      Hsiao, Y.; Rivera, N. R.; Rosner, T.; Krska, S. W.; Njolito, E.; Wang, F.; Sun, Y.; Armstrong, J. D.; Grabowski, E. J. J.; Tillyer, R. D.; Spindler, F.; Malan, C. J. Am. Chem. Soc. 2004, 126, 9918.  doi: 10.1021/ja047901i

    26. [26]

      Ji, Y.; Trenkle, W. C.; Vowles, J. V. Org. Lett. 2006, 8, 1161.  doi: 10.1021/ol053164z

    27. [27]

      Jiang, J.; Wang, Y.; Zhang, X. ACS Catal. 2014, 4, 1570.  doi: 10.1021/cs500261k

  • 加载中
    1. [1]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    8. [8]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    9. [9]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    10. [10]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    11. [11]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(113)
  • Abstract views(3002)
  • HTML views(427)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return