Citation: Yang Kai, Yao Chen, Gao Juanjuan, Chen Sihong, Zheng Xuejie, Deng Luxuan, Zhang Yu'na, Liu Meijuan, Wang Zhaoyang. Progress on the Synthesis of Pyrido[1, 2-a]benzimidazoles[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4168-4183. doi: 10.6023/cjoc202005074 shu

Progress on the Synthesis of Pyrido[1, 2-a]benzimidazoles

  • Corresponding author: Yang Kai, kai_yangyang@126.com Wang Zhaoyang, wangzy@scnu.edu.cn
  • Received Date: 27 May 2020
    Revised Date: 15 June 2020
    Available Online: 30 June 2020

    Fund Project: the Undergraduates Innovation Project of South China Normal University 202003Project supported by the Guangdong Provincial Science and Technology Project (No. 2017A010103016), the Scientific Research Project of Gannan Medical University (No. YB201903), the Undergraduates Innovation Project of South China Normal University (No. 202003) and the Extracurricular Project for Students' Scientific Research of South China Normal University (No.19HHGB08)the Extracurricular Project for Students' Scientific Research of South China Normal University 19HHGB08the Guangdong Provincial Science and Technology Project 2017A010103016the Scientific Research Project of Gannan Medical University YB201903

Figures(24)

  • Pyrido[1, 2-a]benzimidazole is one of the important azaheterocycles with three fused aromatic rings. These molecules containing this skeleton have wide application prospects in the fields of medicinal chemistry and materials, and their syntheses have attracted much attention in organic chemistry. According to the retrosynthetic analysis on the construction of different rings in target molecules, the research progress on the synthesis of pyrido[1, 2-a]benzimidazoles from different types of starting materials is reviewed, and its future development direction is prospected.
  • 加载中
    1. [1]

      Stepien, M.; Gonka, E.; Zyla, M.; Sprutta, N. Chem. Rev. 2017, 117, 3479.  doi: 10.1021/acs.chemrev.6b00076

    2. [2]

      Tan, J.-F.; Bormann, C. T.; Perrin, F. G.; Chadwick, F. M.; Seyerin, K.; Cramer, N. J. Am. Chem. Soc. 2019, 141, 10372.  doi: 10.1021/jacs.9b04111

    3. [3]

      Gomha, S. M.; Eldebss, T. M. A.; Badrey, M. G.; Abdulla, M. M.; Mayhoub, A. S. Chem. Biol. Drug Des. 2015, 86, 1292.  doi: 10.1111/cbdd.12593

    4. [4]

      Xie, Y.-J.; Wu, J.; Che, X.-Z.; Chen, Y.; Huang, H.-W.; Deng, G.-J. Green Chem. 2016, 18, 667.  doi: 10.1039/C5GC01978H

    5. [5]

      Perin, N.; Bobanovic, K.; Zlatar, I.; Jelic, D.; Kelava, V.; Kostrun, S.; Markovic, V. G.; Brajsa, K.; Hranjec, M. Eur. J. Med. Chem. 2017, 125, 722.  doi: 10.1016/j.ejmech.2016.09.084

    6. [6]

      Jovanovic, I. N.; Jadresko, D.; Milicevic, A.; Hranjec, M.; Perin, N. Electrochim. Acta 2019, 297, 452.  doi: 10.1016/j.electacta.2018.11.198

    7. [7]

      Okombo, J.; Brunschwig, C.; Singh, K.; Dziwornu, G. A.; Barnard, L.; Njoroge, M.; Wittlin, S.; Chibale, K. ACS Infect. Dis. 2019, 5, 372.  doi: 10.1021/acsinfecdis.8b00279

    8. [8]

      Mayoka, G.; Njoroge, M.; Okombo, J.; Gibhard, L.; Sanches-Vaz, M.; Fontinha, D.; Birkholtz, L. M.; Reader, J.; van der Watt, M.; Coetzer, T. L.; Lauterbach, S.; Churchyard, A.; Bezuidenhout, B.; Egan, T. J.; Yeates, C.; Wittlin, S.; Prudencio, M.; Chibale, K. J. Med. Chem. 2019, 62, 1022.  doi: 10.1021/acs.jmedchem.8b01769

    9. [9]

      Takeshita, H.; Watanabe, J.; Kimura, Y.; Kawakami, K.; Takahashi, H.; Takemura, M.; Kitamura, A.; Someya, K.; Nakajima, R. Bioorg. Med. Chem. Lett. 2010, 20, 3893.  doi: 10.1016/j.bmcl.2010.05.024

    10. [10]

      Okombo, J.; Singh, K.; Mayoka, G.; Ndubi, F.; Barnard, L.; Njogu, P. M.; Njoroge, M.; Gibhard, L.; Brunschwig, C.; Vargas, M.; Keiser, J.; Egan, T. J.; Chibale, K. ACS Infect. Dis. 2017, 3, 411.  doi: 10.1021/acsinfecdis.6b00205

    11. [11]

      Chalmers, B. A.; Saha, S.; Nguyen, T.; McMurtrie, J.; Sigurdsson, S. T.; Bottle, S. E.; Masters, K. S. Org. Lett. 2014, 16, 5528.  doi: 10.1021/ol502003a

    12. [12]

      Karak, P.; Dutta, C.; Dutta, T.; Koner, A. L.; Choudhury, J. Chem. Commun. 2019, 55, 6791.  doi: 10.1039/C9CC02710F

    13. [13]

      Pericherla, K.; Kaswan, P.; Pandey, K.; Kumar, A. Synthesis 2015, 47, 887.  doi: 10.1055/s-0034-1380182

    14. [14]

      Bagdi, A. K.; Santra, S.; Monir, K.; Hajra, A. Chem. Commun. 2015, 51, 1555.  doi: 10.1039/C4CC08495K

    15. [15]

      Zhao, X.-Y.; Ding, Y.-Y.; Lu, Y.-T.; Kang, C.-M. Chin. J. Org. Chem. 2019, 39, 1304(in Chinese).
       

    16. [16]

      Khajuria, R.; Rasheed, S.; Khajuria, C.; Kapoor, K. K.; Das, P. Synthesis 2018, 50, 2131.  doi: 10.1055/s-0036-1589533

    17. [17]

      Ahneman, D. T.; Estrada, J. G.; Lin, S. S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186.  doi: 10.1126/science.aar5169

    18. [18]

    19. [19]

      Abrams, R.; Lefebvre, Q.; Clayden, J. Angew. Chem., Int. Ed. 2018, 57, 13587.  doi: 10.1002/anie.201809323

    20. [20]

      Venkatesh, C.; Sundaram, G. S. M.; Ila, H.; Junjappa, H. J. Org. Chem. 2006, 71, 1280.  doi: 10.1021/jo0522411

    21. [21]

      Liubchak, K.; Nazarenko, K.; Tolmachev, A. Tetrahedron 2012, 68, 2993.  doi: 10.1016/j.tet.2012.02.027

    22. [22]

      Chen, F.; Chen, H.; Wu, Q.-A.; Luo, S.-P. Chin. J. Org. Chem. 2020, 40, 339(in Chinese).
       

    23. [23]

      Barolo, S. M.; Wang, Y.; Rossi, R. A.; Cuny, G. D. Tetrahedron 2013, 69, 5487.  doi: 10.1016/j.tet.2013.04.087

    24. [24]

      Wang, H.-G.; Wang, Y.; Peng, C.-L.; Zhang, J.-C.; Zhu, Q. J. Am. Chem. Soc. 2010, 132, 13217.  doi: 10.1021/ja1067993

    25. [25]

      Masters, K. S.; Rauws, T. R. M.; Yadav, A. K.; Herrebout, W. A.; Van der Veken, B.; Maes, B. U. W. Chem.-Eur. J. 2011, 17, 6315.  doi: 10.1002/chem.201100574

    26. [26]

      Wu, Y.-X.; Xi, Y.-C.; Zhao, M.; Wang, S.-Y. Chin. J. Org. Chem. 2018, 38, 2590(in Chinese).
       

    27. [27]

    28. [28]

      Duan, Z.-L.; Zhang, L.; Zhang, W.-X.; Lu, L.-J.; Zeng, L.; Shi, R.-Y.; Lei, A.-W. ACS Catal. 2020, 10, 3828.  doi: 10.1021/acscatal.0c00103

    29. [29]

      Lv, S.-D.; Han, X.-X.; Wang, J.-Y.; Zhou, M.-Y.; Wu, Y.-W.; Ma, L.; Niu, L.-W.; Gao, W.; Zhou, J.-H.; Hu, W.; Cui, Y.-Z.; Chen, J.-B. Angew. Chem., Int. Ed. 2020, 59, 11573.  doi: 10.1002/anie.202003502

    30. [30]

      Xue, F.-L.; Peng, P.; Shi, J.; Zhong, M.-L.; Wang, Z.-Y. Synth. Commun. 2014, 44, 1944.  doi: 10.1080/00397911.2013.879899

    31. [31]

      Rao, D. N.; Rasheed, S.; Vishwakarma, R. A.; Das, P. RSC Adv. 2014, 4, 25600.  doi: 10.1039/C4RA02279C

    32. [32]

      Kutsumura, N.; Kunimatsu, S.; Kagawa, K.; Otani, T.; Saito, T. Synthesis 2011, 3235.

    33. [33]

      Qian, G.-Y.; Liu, B.-X.; Tan, Q.-T.; Zhang, S.-W.; Xu, B. Eur. J. Org. Chem. 2014, 4837.

    34. [34]

      He, Y.-M.; Huang, J.-B.; Liang, D.-D.; Liu, L.-Y.; Zhu, Q. Chem. Commun. 2013, 49, 7352.  doi: 10.1039/c3cc43784a

    35. [35]

      Liang, D.-D.; He, Y.-M.; Liu, L.-Y.; Zhu, Q. Org. Lett. 2013, 15, 3476.  doi: 10.1021/ol4015656

    36. [36]

      Lv, Z.-G.; Liu, J.; Wei, W.; Wu, J.; Yu, W.-Q.; Chang, J.-B. Adv. Synth. Catal. 2016, 358, 2759.  doi: 10.1002/adsc.201600455

    37. [37]

      Lee, H. E.; Lee, M. J.; Park, J. K. Asian J. Org. Chem. 2019, 8, 1659.  doi: 10.1002/ajoc.201900347

    38. [38]

      Xu, C.-R.; Wang, K.-X.; Li, D.-W.; Lin, L.-L.; Feng, X.-M. Angew. Chem., Int. Ed. 2019, 58, 18438.  doi: 10.1002/anie.201910898

    39. [39]

      (a) Maiti, D.; Fors, B. P; Henderson, J. L.; Nakamura, Y.; Buchwald, S. L. Chem. Sci. 2011, 2, 57.
      (b) Han, Y.; Zhang, M.; Zhang, Y.-Q.; Zhang, Z.-H. Green Chem. 2018, 20, 4891.

    40. [40]

      Wexler, R. P.; Nuhant, P.; Senter, T. J.; Gale-Day, Z. J. Org. Lett. 2019, 21, 4540.  doi: 10.1021/acs.orglett.9b01434

    41. [41]

      Rasheed, S.; Rao, D. N.; Das, P. J. Org. Chem. 2015, 80, 9321.  doi: 10.1021/acs.joc.5b01396

    42. [42]

      Yan, H.; Guo, H.; Zhou, X.-Q.; Zuo, Z.-Y.; Liu, J.-L.; Zhang, G.-H.; Zhang, S. Synlett 2019, 30, 1469.  doi: 10.1055/s-0037-1611847

    43. [43]

      (a) Louillat, M. L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
      (b) Li, L.-X.; Li, Y.; Zhao, Z.-G.; Luo, H.-T.; Ma, Y.-N. Org. Lett. 2019, 21, 5995.
      (c) Matsumoto, M.; Wada, K.; Urakawa, K.; Ishikawa, H. Org. Lett. 2020, 22, 781.

    44. [44]

      Manna, S.; Matcha, K.; Antonchick, A. P. Angew. Chem., Int. Ed. 2014, 53, 8163.  doi: 10.1002/anie.201403712

    45. [45]

      Liu, X.-L.; Chen, J.; Ma, T.-L. Org. Biomol. Chem. 2018, 16, 8662.  doi: 10.1039/C8OB02351D

    46. [46]

      Xie, Y.-J.; Wu, J.; Che, X.-Z.; Chen, Y.; Huang, H.-W.; Deng, G.-J. Green Chem. 2016, 18, 667.  doi: 10.1039/C5GC01978H

    47. [47]

      Zhang, W.-W.; Li, H.-J.; Wang, M.-R.; Wang, L.-J.; Zhang, A.-H.; Wu, Y.-C. New J. Chem. 2019, 43, 413.  doi: 10.1039/C8NJ04028A

    48. [48]

      Wu, Z.-Q.; Huang, Q.; Zhou, X.-G.; Yu, L.-T.; Li, Z.-K.; Wu, D. Eur. J. Org. Chem. 2011, 5242.

    49. [49]

      Yang, K.; Wang, Z.-Y.; Fu, J.-H.; Tan, Y.-H. Prog. Chem. 2010, 22, 2126(in Chinese).
       

    50. [50]

      Cai, Q.; Li, Z. Q.; Wei, J. J.; Fu, L. B.; Ha, C. Y.; Pei, D. Q.; Ding, K. Org. Lett. 2010, 12, 1500.  doi: 10.1021/ol1002225

    51. [51]

      Zhou, B.-W.; Gao, J.-R.; Jiang, D.; Jia, J.-H.; Yang, Z.-P.; Jin, H.-W. Synthesis 2010, 2794.

    52. [52]

    53. [53]

      Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2016, 45, 6888.  doi: 10.1039/C6CS90108E

    54. [54]

      Nagesh, H. N.; Suresh, A.; Reddy, M. N.; Suresh, N.; Subbalakshmi, J.; Sekhar, K. V. G. C. RSC Adv. 2016, 6, 15884.  doi: 10.1039/C5RA24048D

    55. [55]

      Kato, J.; Ito, Y.; Ijuin, R.; Aoyama, H.; Yokomatsu, T. Org. Lett. 2013, 15, 3794.  doi: 10.1021/ol4017723

    56. [56]

      da Silva, R. B.; Coelho, F. L.; Rodembusch, F. S.; Schwab, R. S.; Schneider, J. M. F. M.; Rampon, D. D.; Schneider, P. H. New J. Chem. 2019, 43, 11596.  doi: 10.1039/C9NJ01948K

    57. [57]

      Yin, C.-X.; Huo, F.-J.; Cooley, N. P.; Spencer, D.; Bartholomew, K.; Barnes, C. L.; Glass, T. E. ACS Chem. Neurosci. 2017, 8, 1159.  doi: 10.1021/acschemneuro.6b00420

    58. [58]

      Panda, K.; Suresh, J. R.; Ila, H.; Junjappa, H. J. Org. Chem. 2003, 68, 3498.  doi: 10.1021/jo026786w

    59. [59]

      Kotovskaya, S. K.; Baskakova, Z. M.; Charushin, V. N.; Chupakhin, O. N.; Belanov, E. F.; Bormotov, N. I.; Balakhnin, S. M.; Serova. O. A. Pharm. Chem. J. 2005, 39, 574.  doi: 10.1007/s11094-006-0023-9

    60. [60]

      Shaaban, M. R.; Eldebss, T. M. A.; Darweesh, A. F.; Farag, A. M. J. Heterocycl. Chem. 2008, 45, 1739.  doi: 10.1002/jhet.5570450627

    61. [61]

      Ibrahim, M. A. Tetrahedron 2013, 69, 6861.  doi: 10.1016/j.tet.2013.06.011

    62. [62]

      Goli-Garmroodi, F.; Omidi, M.; Saeedi, M.; Sarrafzadeh, F.; Rafinejad, A.; Mahdavi, M.; Bardajee, G. R.; Akbarzadeh, T.; Firoozpour, L.; Shafiee, A.; Foroumadi, A. Tetrahedron Lett. 2015, 56, 743.  doi: 10.1016/j.tetlet.2014.12.099

    63. [63]

      Tireli, M.; Starcevic, K.; Martinovic, T.; Pavelic, S. K.; Karminski-Zamola, G.; Hranjec, M. Mol. Diversity 2017, 21, 201.  doi: 10.1007/s11030-016-9702-y

    64. [64]

      Vodolazhenko, M. A.; Mykhailenko, A. E.; Gorobets, N. Y.; Desenko, S. M. J. Heterocycl. Chem. 2017, 54, 753.  doi: 10.1002/jhet.2617

    65. [65]

      Lyons, D. M.; Huttunen, K. M.; Browne, K. A.; Ciccone, A.; Trapani, J. A.; Denny, W. A.; Spicer, J. A. Bioorg. Med. Chem. 2011, 19, 4091.  doi: 10.1016/j.bmc.2011.05.013

    66. [66]

      Jardosh, H. H.; Sangani, C. B.; Patel, M. P.; Patel, R. G. Chin. Chem. Lett. 2013, 24, 123.  doi: 10.1016/j.cclet.2013.01.021

    67. [67]

      Teng, Q.-H.; Peng, X.-J.; Mo, Z.-Y.; Xu, Y.-L.; Tang, H.-T.; Wang, H.-S.; Sun, H.-B.; Pan, Y.-M. Green Chem. 2018, 20, 2007.  doi: 10.1039/C8GC00069G

    68. [68]

      Jiang, Z.-Q.; Miao, D. Z.; Tong, Y.; Pan, Q.; Li, X.-T.; Hu, R.-H.; Han, S.-Q. Synthesis 2015, 47, 1913.  doi: 10.1055/s-0034-1380506

    69. [69]

      Ge, Y.-Q.; Jia, J.; Yang, H.; Tao, X.-T.; Wang, J.-W. Dyes Pigm. 2011, 88, 344.  doi: 10.1016/j.dyepig.2010.08.005

    70. [70]

      Yang, H.; Ge, Y.-Q.; Jia, J.; Wang, J.-W. J. Lumin. 2011, 131, 749.  doi: 10.1016/j.jlumin.2010.11.030

    71. [71]

      Peng, J.-S.; Shang, G.-N.; Chen, C.-X.; Miao, Z.-S.; Li, B. J. Org. Chem. 2013, 78, 1242.  doi: 10.1021/jo302471z

    72. [72]

      Zheng, L.-Y.; Hua, R.-M. J. Org. Chem. 2014, 79, 3930.  doi: 10.1021/jo500401n

    73. [73]

      Ghosh, K.; Nishii, Y.; Miura, M. ACS Catal. 2019, 9, 11455.  doi: 10.1021/acscatal.9b04254

    74. [74]

      Mai, S.-Y.; Luo, Y.-X.; Huang, X.-Y.; Shu, Z.-H.; Li, B.-N.; Lan, Y.; Song, Q.-L. Chem. Commun. 2018, 54, 10240.  doi: 10.1039/C8CC05390A

    75. [75]

      Miao, W.-Q.; Liu, J.-Q.; Wang, X.-S. Org. Biomol. Chem. 2017, 15, 5325.  doi: 10.1039/C7OB01022B

    76. [76]

      Liu, J.-M.; Zhang, N.-F.; Yue, Y.-Y.; Liu, G.-H.; Liu, R.; Zhang, Y.-L.; Zhuo, K.-L. Eur. J. Org. Chem. 2013, 7683.

    77. [77]

      Yan, L.-P.; Zhao, D.-B.; Lan, J.-B.; Cheng, Y.-Y.; Guo, Q.; Li, X.-Y.; Wu, N.-J.; You, J.-S. Org. Biomol. Chem. 2013, 11, 7966.  doi: 10.1039/c3ob41760c

    78. [78]

      Chen, C.-X.; Shang, G.-N.; Zhou, J.-J.; Yu, Y.-H.; Li, B.; Peng, J.-S. Org. Lett. 2014, 16, 1872.  doi: 10.1021/ol500248h

    79. [79]

      Zhao, G.-Y.; Chen, C.-X.; Yue, Y.-X.; Yu, Y.-H.; Peng, J.-S. J. Org. Chem. 2015, 80, 2827.  doi: 10.1021/jo502632b

    80. [80]

      Li, X.; Chen, X.; Wang, H.; Chen, C.-X.; Sun, P.; Mo, B.-C.; Peng, J.-S. Org. Biomol. Chem. 2019, 17, 4014.  doi: 10.1039/C9OB00482C

    81. [81]

      Bera, S. K.; Alam, M. T.; Mal, P. J. Org. Chem. 2019, 84, 12009.  doi: 10.1021/acs.joc.9b01921

    82. [82]

      Wezeman, T.; Scopelliti, R.; Tirani, F. F.; Severin, K. Adv. Synth. Catal. 2019, 361, 1383.  doi: 10.1002/adsc.201801341

    83. [83]

      Huang, J.-R.; Dong, L.; Han, B.; Peng, C.; Chen, Y.-C. Chem.-Eur. J. 2012, 18, 8896.  doi: 10.1002/chem.201201207

    84. [84]

      Dong, L.; Huang, J.-R.; Qu, C.-H.; Zhang, Q.-R.; Zhang, W.; Han, B.; Peng, C. Org. Biomol. Chem. 2013, 11, 6142.  doi: 10.1039/c3ob41177j

    85. [85]

      Ghorai, D.; Choudhury, J. Chem. Commun. 2014, 50, 15159.  doi: 10.1039/C4CC07170K

    86. [86]

      Thenarukandiyil, R.; Dutta, C.; Choudhury, J. Chem.-Eur. J. 2017, 23, 15529.  doi: 10.1002/chem.201703687

    87. [87]

      Morioka, R.; Nobushige, K.; Satoh, T.; Hirano, K.; Miura, M. Org. Lett. 2015, 17, 3130.  doi: 10.1021/acs.orglett.5b01452

    88. [88]

      Reddy, V. P.; Iwasaki, T.; Kambe, N. Org. Biomol. Chem. 2013, 11, 2249.  doi: 10.1039/c3ob27396b

    89. [89]

      Sun, M.-M.; Wu, H.-D.; Zheng, J.-N.; Bao, W.-L. Adv. Synth. Catal. 2012, 354, 835.  doi: 10.1002/adsc.201100801

    90. [90]

      Chen, L.; Zhang, X.; Chen, B.; Li, B.; Li, Y.-B. Chem. Heterocycl. Compd. 2017, 53, 618.  doi: 10.1007/s10593-017-2101-1

    91. [91]

      Reddy, C. R.; Burra, A. G. J. Org. Chem. 2019, 84, 9169.  doi: 10.1021/acs.joc.9b01118

    92. [92]

      Peng, H.-B.; Yu, J.-T.; Jiang, Y.; Wang, L.; Cheng, J. Org. Biomol. Chem. 2015, 13, 5354.  doi: 10.1039/C5OB00450K

    93. [93]

      Li, P.-Y.; Zhang, X.-Y.; Fan, X.-S. J. Org. Chem. 2015, 80, 7508.  doi: 10.1021/acs.joc.5b01092

    94. [94]

      Qi, Z.-S.; Yu, S.-J.; Li, X.-W. J. Org. Chem. 2015, 80, 3471.  doi: 10.1021/acs.joc.5b00059

    95. [95]

      Xue, C.-W.; Han, J.-W.; Zhao, M.; Wang, L.-M. Org. Lett. 2019, 21, 4402.  doi: 10.1021/acs.orglett.9b00761

    96. [96]

    97. [97]

    98. [98]

      Milisiunaite, V.; Arbaciauskiene, E.; Bieliauskas, A.; Vilkauskaite, G.; Sackus, A.; Holzer, W. Tetrahedron 2015, 71, 3385.  doi: 10.1016/j.tet.2015.03.092

    99. [99]

      Rustagi, V.; Aggarwal, T.; Verma, A. K. Green Chem. 2011, 13, 1640.  doi: 10.1039/c1gc15346c

    100. [100]

      Rustagi, V.; Tiwari, R.; Verma, A. K. Eur. J. Org. Chem. 2012, 4590.

    101. [101]

      Ouyang, H.-C.; Tang, R.-Y.; Zhong, P.; Zhang, X.-G.; Li, J.-H. J. Org. Chem. 2011, 76, 223.  doi: 10.1021/jo102060j

    102. [102]

      Gvozdev, V. D.; Shavrin, K. N.; Baskir, E. G.; Egorov, M. P.; Nefedov, O. M. Mendeleev Commun. 2017, 27, 231.  doi: 10.1016/j.mencom.2017.05.004

    103. [103]

      Chaitanya, T. K.; Prakash, K. S.; Nagarajan, R. Tetrahedron 2011, 67, 6934.  doi: 10.1016/j.tet.2011.06.076

    104. [104]

      Mishra, M.; Twardy, D.; Ellstrom, C.; Wheeler, K. A.; Dembinski, R.; Török, B. Green Chem. 2019, 21, 99.  doi: 10.1039/C8GC02520G

    105. [105]

      Adib, M.; Zainali, M.; Kim, I. Synlett 2016, 27, 1844.  doi: 10.1055/s-0035-1561939

    106. [106]

      Yan, C.-G.; Wang, Q.-F.; Song, X.-K.; Sun, J. J. Org. Chem. 2009, 74, 710.  doi: 10.1021/jo802166t

    107. [107]

      Hu, Y.; Wang, T.; Liu, Y.-Z.; Nie, R.-F.; Yang, N.-H.; Wang, Q.-T.; Li, G.-B.; Wu, Y. Org. Lett. 2020, 22, 501.  doi: 10.1021/acs.orglett.9b04256

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    3. [3]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    4. [4]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(104)
  • Abstract views(5271)
  • HTML views(1203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return