Citation: Sun Shangzheng, Wang Xing, Cheng Taijin, Xu Hui, Dai Huixiong. Cu(II)-Mediated β-C—H Alkynylation of Acrylamides with Terminal Alkynes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3371-3379. doi: 10.6023/cjoc202005064 shu

Cu(II)-Mediated β-C—H Alkynylation of Acrylamides with Terminal Alkynes

  • Corresponding author: Dai Huixiong, 
  • Received Date: 23 May 2020
    Revised Date: 20 June 2020
    Available Online: 8 July 2020

    Fund Project: the Science and Technology Commission of Shanghai Municipality 17JC1405000the National Natural Science Foundation of China 21772211Project supported by the National Natural Science Foundation of China (No. 21772211), the Youth Innovation Promotion Association CAS (Nos. 2014229, 2018293), and the Science and Technology Commission of Shanghai Municipality (No. 17JC1405000)the Youth Innovation Promotion Association CAS 2014229the Youth Innovation Promotion Association CAS 2018293

Figures(4)

  • Cu(Ⅱ)-mediated β-C-H alkynylation of acrylamides with terminal alkynes is described by employing amide-oxazoline bidentate auxiliary, forming the conjugated 1, 3-enynes. This protocol is characterized by its mild conditions, broad substarate scope and excellent regio- and stereo-selectivity.
  • 加载中
    1. [1]

      For selected examples, see:
      (a) Nussbaumer, P.; Leitner, I.; Mraz, K.; Stütz, A. J. Med. Chem. 1995, 38, 1831.
      (b) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901.
      (c) Rudi, A.; Schleyer, M.; Kashman, Y. J. Nat. Prod. 2000, 63, 1434. (d) Liu, Y.; Nishiura, M.; Wang, Y.; Hou, Z. J. Am. Chem. Soc. 2006, 128, 5592.

    2. [2]

      Daly, J. W.; Karle, I.; Myers, C. W.; Tokuyama, T.; Waters, J. A.; Witkop, B. Proc. Natl. Acad. Sci U. S. A. 1971, 68, 1870.

    3. [3]

      Iverson, S. L.; Uetrecht, J. P. Chem. Res. Toxicol. 2001, 14, 175.  doi: 10.1021/tx0002029

    4. [4]

      Zein, N.; Sinha, A. M.; McGahren, W. J. Ellestad, G. A. Science 1988, 240, 11988.

    5. [5]

      Selected examples:
      (a) Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 5260.
      (b) Kawasaki, T.; Saito, S.; Yamamoto, Y. J. Org. Chem. 2002, 67, 2653.
      (c) Lee, S.; Lee, T.; Lee, Y. M.; Kim, D.; Kim, S. Angew. Chem., Int. Ed. 2007, 46, 8422.
      (d) Zhang, W.; Xu, H.; Xu, H. Tang, W. J. Am. Chem. Soc. 2009, 131, 3832.
      (e) Nishimura, A.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2012, 134, 15692.
      (f) Ma, K.; Miao, Y.; Gao, X.; Chao, J.; Zhang, X.; Qin, X.-M. Chin. Chem. Lett. 2017, 28, 1035.

    6. [6]

      Zhou, Y.; Zhang, Y.; Wang, J. Org. Biomol. Chem. 2016, 14, 6638.  doi: 10.1039/C6OB00944A

    7. [7]

      (a) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.
      (b) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979.
      (c) Plenio, H. Angew. Chem., Int. Ed. 2008, 47, 6954.
      (d) Chinchilla, R.; Najera, C. Chem. Soc. Rev. 2011, 40, 5084.

    8. [8]

      Reviews for transition metal catalyzed C-H activation, see:
      (a) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
      (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
      (c) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
      (d) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
      (e) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192.
      (f) Rej, S.; Ano, Y.; Chatani, N. Chem. Rev. 2020, 120, 1788.
      (g) Wang, Q.; Gu, Q.; You, S. L. Acta Chim. Sinica 2019, 77, 690(in Chinese).
      (王强, 顾庆, 游书力, 化学学报, 2019, 77, 690.)
      (h) Guan, H.; Chen, L.; Liu, L. Acta Chim. Sinica 2018, 76, 440(in Chinese).
      (关弘浩, 陈磊, 刘磊, 化学学报, 2018, 76, 440.)
      (i) Li, X.; Liang, G.; Shi, Z. Chin. J. Chem. 2020, 38, 929.

    9. [9]

      Examples for olefinic C-H alkynylation with alkynyl halides, see:
      (a) Collins, K. D.; Lied, F.; Glorius, F. Chem. Commun. 2014, 50, 4459.
      (b) Feng, C.; Feng, D.; Loh, T.-P. Chem. Commun. 2014, 50, 9865.
      (c) Feng, C.; Feng, D.; Luo, Y.; Loh, T.-P. Org. Lett. 2014, 16, 5956.
      (d) Xu, Y.-H.; Zhang, Q.-C.; He, T.; Meng, F.-F.; Loh, T.-P. Adv. Synth. Catal. 2014, 356, 1539.
      (e) Finkbeiner, P.; Kloeckner, U.; Nachtsheim, B. J. Angew. Chem., Int. Ed. 2015, 54, 4949.
      (f) Tan, E.; Quino-nero, O.; Elena de Orbe, M.; Echavarren, A. M. ACS Catal. 2018, 8, 2166.

    10. [10]

      For C-H alkynylation of arenes with terminal alkynes:
      (a) Wei, Y.; Zhao, H.; Kan, J.; Su, W.; Hong, M. J. Am. Chem. Soc. 2010, 132, 2522.
      (b) de Haro, T.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 1512.
      (c) Jie, X.; Shang, Y.; Hu, P.; Su, W. Angew. Chem., Int. Ed. 2013, 52, 3630
      (d) Zhou, J.; Shi, J.; Qi, Z.; Li, X.; Xu, H. E. Yi, W. ACS Catal. 2015, 5, 6999.
      (e) Liu, Y.-J.; Liu, Y.-H.; Yin, X.-S.; Gu, W.-J.; Shi, B.-F. Chem.- Eur. J. 2015, 21, 205.
      (f) Tian, C.; Dhawa, U.; Scheremetjew, A.; Ackermann, L. ACS Catal. 2019, 9, 7690.

    11. [11]

      (a) Zhao, T.; Qin, D.; Han, W.; Yang, S.; Feng, B.; Gao, G.; You, J. Chem. Commun. 2019, 55, 6118.
      (b) Hadi, V.; Yoo, K. S.; Jeong, M.; K. Jung, W. Tetrahedron Lett. 2009, 50, 2370.
      (c) Shao, Y.-L.; Zhang, X.-H.; Han, J.-S.; Zhong, P. Org. Lett. 2012, 14, 5242.

    12. [12]

      Select reviews for Cu-catalyzed C-H functionalization, see:
      (a) Liu, J.; Chen, G.; Tan, Z. Adv. Synth. Catal. 2016, 358, 1174.
      (b) Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028.
      (c) Shang, M.; Sun, S.-Z.; Wang, M.; Wang, H.-Li.; Dai, H.-X. Synthesis 2016, 48, 4381.

    13. [13]

      (a) Shang, M.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 3354.
      (b) Shang, M.; Sun, S.-Z.; Wang, H.-Li.; Laforteza, B. N.; Dai, H.-X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2014, 53, 10439.
      (c) Shang, M.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. Org. Lett. 2014, 16, 5666.
      (d) Wang, H.-L.; Shang, M.; Sun, S.-Z.; Zhou, Z.-L.; Laforteza, B. N.; Dai, H.-X.; Yu, J.-Q. Org. Lett. 2015, 17, 1228.
      (e) Sun, S.-Z; Shang, M.; Wang, H.-L.; Lin, H.-X.; Dai, H.-X.; Yu, J.-Q. J. Org. Chem. 2015, 80, 8843.
      (f) Shang, M.; Shao, Q.; Sun, S.-Z.; Chen, Y.-Q.; Dai, H.-X.; Yu, J.-Q. Chem. Sci. 2017, 8, 1469.
      (g) Xu, L.; Wang, X.; Ma, B.; Yin, M.-X.; Lin, H.-X.; Dai, H.-X.; Yu, J.-Q. Chem. Sci. 2018, 9, 5160.
      (h) Sun, S.-Z.; Xu, H.; Dai, H.-X. Chin. Chem. Lett. 2019, 30, 969.
      (i) Sun, S.-Z.; Shang, M.; Xu, H.; Cheng, T.-J.; Li, M.-H.; Dai, H.-X. Chem. Commun. 2020, 56, 1444.

    14. [14]

      (a) Shang, M.; Wang, H.-L.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 11590.
      (b) Shang, M.; Wang, M.-M.; Saint-Denis, T. G.; Li, M.-H.; Dai, H.-X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 5317.

    15. [15]

      (a) Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797.
      (b) Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 4457.

  • 加载中
    1. [1]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    2. [2]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    3. [3]

      Yongli ZhaoDingsheng CaoJie-Ping WanYunyun Liu . Synthesis of 3-phosphinyl chromones via in situ iodination mediated C-H phosphination and the tunable synthesis of 2-phosphoryl chromanones. Chinese Chemical Letters, 2026, 37(1): 111740-. doi: 10.1016/j.cclet.2025.111740

    4. [4]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    5. [5]

      Weimei ZengYouai Qiu . Electrochemical C-H carboxylation of benzylamines. Chinese Chemical Letters, 2026, 37(1): 111679-. doi: 10.1016/j.cclet.2025.111679

    6. [6]

      Wei-Cheng ZhaoYan HeChen-Hui JiangPeng LiuQian GaoDuo-Duo HuXi-Sheng Wang . Asymmetric construction of non-activated C-SCF3 stereocenter via copper-catalyzed hydroallylation of SCF3-alkenes. Chinese Chemical Letters, 2026, 37(2): 111487-. doi: 10.1016/j.cclet.2025.111487

    7. [7]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    8. [8]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    9. [9]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    10. [10]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    11. [11]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    12. [12]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    13. [13]

      Xinghao CaiChen MaYing KangYuqiang RenXue MengWei LuShiming FanShouxin Liu . Nickel-catalyzed C(sp2)–H alkynylation of free α-substituted benzylamines using a transient directing group. Chinese Chemical Letters, 2025, 36(10): 110901-. doi: 10.1016/j.cclet.2025.110901

    14. [14]

      Xiao TangErik V. Van der EyckenLiangliang Song . Transition metal-catalyzed C-H activation/annulation for the construction of unnatural amino acids and peptides. Chinese Chemical Letters, 2026, 37(2): 111678-. doi: 10.1016/j.cclet.2025.111678

    15. [15]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    16. [16]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    17. [17]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    18. [18]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    19. [19]

      Yajun Gao Xinyu Yang Jian Su Zhizhong Li . A stable scandium(III) metal-organic framework with introduced nitrate ions for enhancing C2H6/C2H4 selectivity in the separation of MTO products. Chinese Journal of Structural Chemistry, 2025, 44(6): 100576-100576. doi: 10.1016/j.cjsc.2025.100576

    20. [20]

      Feng-Fan YangYin-Kang DingLin-Kai WuJiayue TianShuai DouWenjing WangLinfeng Liang . A 1,3,5-triazine μ3-bridged neutral Cu(Ⅰ) framework with enhanced stability and CO2 capture selectivity. Chinese Chemical Letters, 2025, 36(12): 110550-. doi: 10.1016/j.cclet.2024.110550

Metrics
  • PDF Downloads(11)
  • Abstract views(1602)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return