Citation: Sun Zezhong, Xu Miao, Wang Yunxia, Hu Xiangdong. Synthetic Progress of Alkaloids against Mycobacterium Tuberculosis: Pseudopteroxazole and Ileabethoxazole[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4203-4215. doi: 10.6023/cjoc202005034 shu

Synthetic Progress of Alkaloids against Mycobacterium Tuberculosis: Pseudopteroxazole and Ileabethoxazole

  • Corresponding author: Wang Yunxia, wyx27210@nwu.edu.cn Hu Xiangdong, xiangdonghu@nwu.edu.cn
  • Received Date: 14 May 2020
    Revised Date: 11 June 2020
    Available Online: 24 June 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21772153), the Science and Technology Department of Shaanxi Province (No. S2019-JC-YB-0846) and the Key Science and Technology Innovation Team of Shaanxi Province (No. 2017KCT-37)the National Natural Science Foundation of China 21772153the Science and Technology Department of Shaanxi Province S2019-JC-YB-0846the Key Science and Technology Innovation Team of Shaanxi Province 2017KCT-37

Figures(11)

  • Two alkaloids of pseudopteroxazole and ileabethoxazole, isolated from sea whip Pseudopterogorgia elisabethae, have significant antimicrobial activity against pathogen of tuberculosis:Mycobacterium tuberculosis. These two alkaloids possess similar tetracyclic skeleton, which containing four stereocenters, a fully substituted aromatic ring and an uncommon benzoxazole unit in natural products. Significant antimicrobial activity and special molecular structures attracted extensive attentions to synthetic study on pseudopteroxazole and ileabethoxazole. The progress in the total synthesis of these two alkaloids is reviewed.
  • 加载中
    1. [1]

      (a) Paulson, T. Nature 2013, 502, S2.
      (b) Gong, H.; Li, J.; Xu, A.; Tang, Y.; Ji, W.; Gao, R.; Wang, S.; Yu, L.; Tian, C.; Li, J.; Yen, H.-Y.; Lam, S. M.; Shui, G.; Yang, X.; Sun, Y.; Li, X.; Jia, M.; Yang, C.; Jiang, B.; Lou, Z.; Robinson, C. V.; Wong, L.-L.; Guddat, L. W.; Sun, F.; Wang, Q.; Rao, Z. Science 2018, 362, eaat8923.

    2. [2]

      (a) Gerard, J.; Lloyd, R.; Barsby, T.; Haden, P.; Kelly, M. T.; Andersen, R. J. J. Nat. Prod. 1997, 60, 223.
      (b) El Sayed, K. A.; Bartyzel, P.; Shen, X.-Y.; Perry, T. L.; Zjawiony, J. K.; Hamann, M. T. Tetrahedron 2000, 56, 949.
      (c) Rodríguez, I. I.; Rodríguez, A. D. J. Nat. Prod. 2003, 66, 855.
      (d) De Oliveira, J. H.; Grube, A.; Köck, M.; Berlinck, R. G.; Macedo, M. L.; Ferreira, A. G.; Hajdu, E. J. Nat. Prod. 2004, 67, 1685.
      (e) Ma, C.-Y.; Case, R. J.; Wang, Y.-H.; Zhang, H.-J.; Tan, G. T.; Hung, N. V.; Cuong, N. M.; Franzblau, S. G.; Soejarto, D. D.; Fong, H. H. S.; Pauli, G. F. Planta Med. 2005, 71, 261.
      (f) Winkler, J. D.; Londregan, A. T.; Hamann, M. T. Org. Lett. 2006, 8, 2591.
      (g) Steinmetz, H.; Irschik, H.; Kunze, B.; Reichenbach, H.; Hoefle, G.; Jansen, R. Chem.-Eur. J. 2007, 13, 5822.
      (h) Thongthoom, T.; Songsiang, U.; Phaosiri, C.; Yenjai, C. Arch. Pharm. Res. 2010, 33, 675.
      (i) Auranwiwat, C.; Laphookhieo, S.; Trisuwan, K.; Pyne, S. G.; Ritthiwigrom, T. Phytochem. Lett. 2014, 9, 113.

    3. [3]

      Rodríguez, A. D.; Ramirez, C.; Rodríguez, I. I.; Gonzalez, E. Org. Lett. 1999, 1, 527.  doi: 10.1021/ol9907116

    4. [4]

      Rodríguez, I. I.; Rodríguez, A. D.; Wang, Y.; Franzblau, S. G. Tetrahedron Lett. 2006, 47, 3229.  doi: 10.1016/j.tetlet.2006.03.048

    5. [5]

      Johnson, T. W.; Corey, E. J. J. Am. Chem. Soc. 2001, 123, 4475.  doi: 10.1021/ja010221k

    6. [6]

      Fernando, C. R.; Calder, I. C.; Ham, K. N. J. Med. Chem. 1980, 23, 1153.  doi: 10.1021/jm00185a001

    7. [7]

      (a) Vedejs, E.; Fang, H. W. J. Org. Chem. 1984, 49, 210.
      (b) Cristau, H.-J.; Ribeill, Y. Synthesis 1988, 911.

    8. [8]

      (a) Corey, E. J.; Lazerwith, S. E. J. Am. Chem. Soc. 1998, 120, 12777.
      (b) Lazerwith, S. E.; Johnson, T. W.; Corey, E. J. Org. Lett. 2000, 2, 2389.
      (c) Hu, Y.-L.; Wang, Z.; Yang, H.; Chen, J.; Wu, Z.-B.; Lei, Y.; Zhou, L. Chem. Sci. 2019, 10, 6777.

    9. [9]

      Wiedenau, P.; Monse, B.; Blechert, S. Tetrahedron 1995, 51, 1167.  doi: 10.1016/0040-4020(94)01002-H

    10. [10]

      Evans, D.; Smith, C. E.; Williamson, W. R. N. J. Med. Chem. 1977, 20, 169.  doi: 10.1021/jm00211a039

    11. [11]

      (a) Nakahara, Y.; Fujita, A.; Beppu, K.; Ogawa, T. Tetrahedron 1986, 42, 6465.
      (b) Katritzky, A. R.; Musgrave, R. P.; Rachwal, B.; Zaklika, C. Heterocycles 1995, 41, 345.

    12. [12]

      Davidson, J. P.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 13486.  doi: 10.1021/ja0378916

    13. [13]

      Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 1987, 1625.

    14. [14]

      Vedejs, E.; Fang, H. W. J. Org. Chem. 1984, 49, 210.  doi: 10.1021/jo00175a057

    15. [15]

      Corey, E. J.; Sauers, C. K. J. Am. Chem. Soc. 1957, 79, 248.

    16. [16]

      (a) Harmata, M.; Hong, X.; Barnes, C. L. Org. Lett. 2004, 6, 2201.
      (b) Harmata, M.; Hong, X. Org. Lett. 2005, 7, 3581.

    17. [17]

      (a) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731.
      (b) Harmata, M.; Pavri, N. Angew. Chem., Int. Ed. 1999, 38, 2419.

    18. [18]

      Harmata, M.; Kahraman, M. Synthesis 1994, 142.

    19. [19]

      Cary, J. M.; Moore, J. S. Org. Lett. 2002, 4, 4663.  doi: 10.1021/ol0270982

    20. [20]

      Moore, J. S.; Weinstein, E. J.; Wu, Z. Tetrahedron Lett. 1991, 32, 2465.  doi: 10.1016/S0040-4039(00)74354-1

    21. [21]

      Shi, L.; Narula, C. K.; Mak, K. T.; Kao, L.; Xu, Y.; Heck, R. F. J. Org. Chem. 1983, 48, 3894.  doi: 10.1021/jo00170a005

    22. [22]

      Cesati, R. R.; De Armas, J.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 96.  doi: 10.1021/ja0305407

    23. [23]

      (a) Smidt, S. P.; Menges, F.; Pfaltz, A. Org. Lett. 2004, 6, 2023.
      (b) Smidt, S. P.; Menges, F.; Pfaltz, A. Org. Lett. 2004, 6, 3653.

    24. [24]

      Smith, A. B.; Schow, S. R.; Bloom, J. D.; Thompson, A. S.; Winzenberg, K. N. J. Am. Chem. Soc. 1982, 104, 4015.  doi: 10.1021/ja00378a045

    25. [25]

      Williams, D. R.; Shah, A. A. J. Am. Chem. Soc. 2014, 136, 8829.  doi: 10.1021/ja5043462

    26. [26]

      (a) Williams, D. R.; Fu, L. Synlett 2010, 591.
      (b) Williams, D. R.; Fu, L. Synlett 2010, 1641.
      (c) Counceller, C. M.; Eichman, C. C.; Proust, N.; Stambuli, J. P. Adv. Synth. Catal. 2011, 353, 79.
      (d) Williams, D. R.; Shah, A. A. Chem. Commun. 2010, 46, 4297.

    27. [27]

      Ohira, S. Synth. Commun. 1989, 19, 561.  doi: 10.1080/00397918908050700

    28. [28]

      (a) Shibata, T.; Koga, Y.; Narasaka, K. Bull. Chem. Soc. Jpn. 1995, 68, 911.
      (b) Pearson, A. J.; Dubbert, R. A. Organometallics 1994, 13, 1656.
      (c) Williams, D. R.; Shah, A. A.; Mazumder, S.; Baik, M.-H. Chem. Sci. 2013, 4, 238.

    29. [29]

      DeSolms, S. J. J. Org. Chem. 1976, 41, 2650.  doi: 10.1021/jo00877a034

    30. [30]

      Baker, B. A.; Boskovic, Z. V.; Lipshutz, B. H. Org. Lett. 2008, 10, 289.  doi: 10.1021/ol702689v

    31. [31]

      Anderson, A. M.; Blazek, J. M.; Garg, P.; Payne, B. J.; Mohan, R. S. Tetrahedron Lett. 2000, 41, 1527.  doi: 10.1016/S0040-4039(99)02330-8

    32. [32]

      Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.  doi: 10.1016/S0040-4039(01)80205-7

    33. [33]

      Yang, M.; Yang, X.; Sun, H.; Li, A. Angew. Chem., Int. Ed. 2016, 55, 2851.  doi: 10.1002/anie.201510568

    34. [34]

      (a) Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron Lett. 1988, 29, 5565.
      (b) Negishi, E.; Noda, Y.; Lamaty, F.; Vawter, E. J. Tetrahedron Lett. 1990, 31, 4393.
      (c) Suffert, J.; Salem, B.; Klotz, P. J. Am. Chem. Soc. 2001, 123, 12107.
      (d) Salem, B.; Klotz, P.; Suffert, J. Org. Lett. 2003, 5, 845.
      (e) Salem, B.; Delort, E.; Klotz, P.; Suffert, J. Org. Lett. 2003, 5, 2307.
      (f) Hulot, C.; Amiri, S.; Blond, G.; Schreiner, P. R.; Suffert, J. J. Am. Chem. Soc. 2009, 131, 13387.
      (g) Kan, S. B. J.; Anderson, E. A. Org. Lett. 2008, 10, 2323.
      (h) Cordonnier, M.-C. A.; Kan, S. B. J.; Anderson, E. A. Chem. Commun. 2008, 44, 5818.
      (i) Cordonnier, M.-C. A.; Kan, S. B. J.; Gockel, B.; Goh, S. S.; Anderson, E. A. Org. Chem. Front. 2014, 1, 661.

    35. [35]

      (a) Lu, Z.; Li, Y.; Deng, J.; Li, A. Nat. Chem. 2013, 5, 679.
      (b) Li, J.; Yang, P.; Yao, M.; Deng, J.; Li, A. J. Am. Chem. Soc. 2014, 136, 16477.
      (c) Bian, M.; Wang, Z.; Xiong, X.; Sun, Y.; Matera, C.; Nicolaou, K. C.; Li, A. J. Am. Chem. Soc. 2012, 134, 8078.
      (d) Meng, Z.; Yu, H.; Li, L.; Tao, W.; Chen, H.; Wan, M.; Yang, P.; Edmonds, D. J.; Zhong, J.; Li, A. Nat. Commun. 2015, 6, 6096.
      (e) Yang, M.; Li, J.; Li, A. Nat. Commun. 2015, 6, 6445.
      (f) Wan, M.; Yao, M.; Gong, J.; Yang, P.; Liu, H.; Li, A. Chin. Chem. Lett. 2015, 26, 272.
      (g) Lu, Z.; Li, H.; Bian, M.; Li, A. J. Am. Chem. Soc. 2015, 137, 13764.

    36. [36]

      Yadav, J. S.; Bhasker, E. V.; Geetha, V.; Srihari, P. Tetrahedron 2010, 66, 1997.  doi: 10.1016/j.tet.2010.01.054

    37. [37]

      Buynak, J. D.; Strickland, J. B.; Lamb, G. W.; Khasnis, D.; Modi, S.; Williams, D.; Zhang, H. J. Org. Chem. 1991, 56, 7076.  doi: 10.1021/jo00025a024

    38. [38]

      (a) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 11640.
      (b) Nicolaou, K. C.; Reingruber, R.; Sarlah, D.; Bräse, S. J. Am. Chem. Soc. 2009, 131, 2086.

    39. [39]

      Fürstner, A.; Radkowski, K. Chem. Commun. 2002, 18, 2182.

    40. [40]

      Félix, G.; Dunoguès, J.; Pisciotti, F.; Galas, R. Angew. Chem., Int. Ed. Engl. 1977, 16, 488.  doi: 10.1002/anie.197704881

    41. [41]

      Blakemore, P. R.; Cole, W. J.; Kocieński, P. J.; Morley, A. Synlett 1998, 26.

    42. [42]

      Abelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987, 52, 4130.  doi: 10.1021/jo00227a038

    43. [43]

      (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. J. Org. Chem. 1971, 36, 1379.
      (b) Colvin, E. W.; Hamill, B. J. J. Chem. Soc., Perkin Trans. 1 1977, 869.
      (c) Gilbert, J. C.; Weerasooriya, U. J. Org. Chem. 1979, 44, 4997.

    44. [44]

      Suárez, A.; Fu, G. C.; Angew. Chem., Int. Ed. 2004, 43, 3580.  doi: 10.1002/anie.200454070

    45. [45]

      Yu, X.; Su, F.; Liu, C.; Yuan, H.; Zhao, S.; Zhou, Z.; Quan, T.; Luo, T. J. Am. Chem. Soc. 2016, 138, 6261.  doi: 10.1021/jacs.6b02624

    46. [46]

      (a) Jerphagnon, T.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2009, 38, 1039.
      (b) Alexakis, A.; Krause, N.; Woodward, S. In Copper-Catalyzed Asymmetric Synthesis, Eds.: Alexakis, A.; Krause, N.; Woodward, S., Wiley-VCH, Weinheim, 2014, Chapter 2, pp. 33~68.

    47. [47]

      Alexakis, A.; Benhaim, C.; Rosset, S.; Humam, M. J. Am. Chem. Soc. 2002, 124, 5262.  doi: 10.1021/ja025598k

    48. [48]

      Morita, Y.; Suzuki, M.; Noyori, R. J. Org. Chem. 1989, 54, 1785.  doi: 10.1021/jo00269a006

    49. [49]

      Jeffery, T. J. Chem. Soc., Chem. Commun. 1991, 324.

    50. [50]

      McCulloch, M. W. B.; Berrue, F.; Haltli, B.; Kerr, R. G. J. Nat. Prod. 2011, 74, 2250.  doi: 10.1021/np2006555

    51. [51]

      Zhang, X.; Fang, X.; Xu, M.; Lei, Y.; Wu, Z.; Hu, X. Angew. Chem., Int. Ed. 2019, 58, 7845.  doi: 10.1002/anie.201901651

    52. [52]

      (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.
      (b) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
      (c) Deng, J.; Zhou, S.; Zhang, W.; Li, J.; Li, R.; Li, A. J. Am. Chem. Soc. 2014, 136, 8185.
      (d) Zhou, S.; Chen, H.; Luo, Y.; Zhang, W.; Li, A. Angew. Chem., Int. Ed. 2015, 54, 6878.
      (e) Jiang, S.; Zeng, X.; Liang, X.; Lei, T.; Wei, K.; Yang, Y. Angew. Chem., Int. Ed. 2016, 55, 4044.
      (f) Liang, X.; Zhang, T.-Y.; Zeng, X.-Y.; Zheng, Y.; Wei, K.; Yang, Y.-R. J. Am. Chem. Soc. 2017, 139, 3364.
      (g) Zhou, S.; Guo, R.; Yang, P.; Li, A. J. Am. Chem. Soc. 2018, 140, 9025.
      (h) Liang, X.; Zhang, T.; Meng, C.; Li, X.; Wei, K.; Yang, Y. Org. Lett. 2018, 20, 4575.
      (i) Yao, J.-N.; Liang, X.; Wei, K.; Yang, Y.-R. Org. Lett. 2019, 21, 8485.

    53. [53]

      Hou, S.-H.; Prichina, A. Y.; Zhang, M.; Dong, G. Angew. Chem., Int. Ed. 2020, 59, 7848.  doi: 10.1002/anie.201915821

    54. [54]

      Abele, S.; Inauen, R.; Spielvogel, D.; Moessner, C. J. Org. Chem. 2012, 77, 4765.  doi: 10.1021/jo3005638

    55. [55]

      Xia, Y.; Lu, G.; Liu, P.; Dong, G. Nature 2016, 539, 546.  doi: 10.1038/nature19849

    56. [56]

      Zhang, S.; Li, Q.; He, G.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2015, 137, 531.  doi: 10.1021/ja511557h

    57. [57]

      (a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778.
      (b) Nave, S.; Sonawane, R. P.; Elford, T. G.; Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 17096.
      (c) Elford, T. G.; Nave, S.; Sonawane, R. P.; Aggarwal, V. K. J. Am. Chem. Soc. 2011, 133, 16798.
      (d) Leonori, D.; Aggarwal, V. K. Acc. Chem. Res. 2014, 47, 3174.

    58. [58]

      (a) Escarcena, R.; Perez-Meseguer, J.; del Olmo, E.; Alanis-Garza, B.; Garza-Gonzalez, E.; Salazar-Aranda, R.; De Torres, N. W. Molecules 2015, 20, 7245.
      (b) Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689.
      (c) Wang, D.-Y.; Guo, S.-H.; Pan, G.-F.; Zhu, X.-Q.; Gao, Y.-R.; Wang, Y.-Q. Org. Lett. 2018, 20, 1794.

    59. [59]

      (a) Zhang, Y.; C. Li, J. J. Am. Chem. Soc. 2006, 128, 4242.
      (b) Liu, L.; Floreancig, P. E. Org. Lett. 2009, 11, 3152.
      (c) Lingamurthy, M.; Jagadeesh, Y.; Ramakrishna, K.; Rao, B. V. J. Org. Chem. 2016, 81, 1367.
      (d) Morales-Rivera, C. A.; Floreancig, P. E.; Liu, P. J. Am. Chem. Soc. 2017, 139, 17935.

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    13. [13]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    16. [16]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

Metrics
  • PDF Downloads(67)
  • Abstract views(3324)
  • HTML views(432)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return