Citation: Wu Yi, Xiao Yuanjing, Zhang Junliang. BCl3 Mediated Borylative Cyclization of 2-(1-Alkynyl)-2-alken-1-ones[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3908-3915. doi: 10.6023/cjoc202005025 shu

BCl3 Mediated Borylative Cyclization of 2-(1-Alkynyl)-2-alken-1-ones

  • Corresponding author: Xiao Yuanjing, yjxiao@chem.ecnu.edu.cn Zhang Junliang, jlzhang@chem.ecnu.edu.cn
  • Received Date: 10 May 2020
    Revised Date: 8 June 2020
    Available Online: 30 June 2020

    Fund Project: the National Natural Science Foundation of China 21372084the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education and the National Basic Research Program of China 973 Programthe Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education and the National Basic Research Program of China 2015CB-856600the National Natural Science Foundation of China 21871093the National Natural Science Foundation of China 21425205Project supported by the National Natural Science Foundation of China (Nos. 21372084, 21425205, 21871093), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education and the National Basic Research Program of China (973 Program, No. 2015CB-856600)

Figures(4)

  • A metal-free, BCl3 mediated borylative cyclization of 2-(1-alkynyl)-2-alken-1-ones leading to synthetic valuable multi-functionalized naphthalene boronates in one step was developed. The boronate functionality present in the product provides many opportunities for derivatization. The salient features of this reaction include moderate to good yields, gram-scale synthesis and diverse synthetic transformations. In the meantime, the new synthetic applications of 2-(1-alkynyl)-2-alken-1-ones have been developed.
  • 加载中
    1. [1]

    2. [2]

      (a) Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452. (b) Reddy, R. A.; Baumeister, U.; Keith, C.; Tschierske, C. J. Mater. Chem. 2007, 17, 62.
      (c) Svoboda, J.; Novotna, V.; Kozmik, V.; Glogarova, M.; Weissflog, W.; Diele, S.; Pelzl, G. J. Mater. Chem. 2003, 13, 2104.
      (d) Christian, J.; Susann, G.; Helmut, H.; Brigitte, S. Naphthalene Compounds for Liquid-Crystalline Mixtures, WO 2017097400 A1.

    3. [3]

      For selected reviews: (a) Zhou, L.; Zhao, J.; Shan, T.; Cai, X.; Peng, Y. Mini-Rev. Med. Chem. 2010, 10, 977.
      (b) Ammar, Y. A.; Salem, M. A.; Fayed, Eman A.; Helal, M. H.; El-Gaby, M. S. A.; Thabet, H. K. Syn. Commun. 2017, 47, 1341. For selected examples:
      (c) Zhao, H.; Neamati, N.; Mazumder, A.; Sunder, S.; Pommier, Y.; Burke, T. R. J. Med. Chem. 1997, 40, 1186.
      (d) Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamto, Y.; Takahashi, M.; Kotera, J.; Ikeo, T. J. Med. Chem. 1999, 42, 1293.
      (e) Wang, Y. H.; Zhao, J. Y. WO 2017202207, 2017.

    4. [4]

      For reviews: (a) Naphthalenes, Anthracenes, 9H-Fluorenes, and Other Acenens, Toyota, S.; Iwanaga, T. in Science of Synthesis (Houben-Weyl Methods of Molecular Transformations), Eds.: Siegel, J. S.; Tobe, Y., Vol. 45b, Thieme, Stuttgart, 2010, pp. 745~854.
      (b) de Koning, C. B.; Rousseau, A. L.; van Otterlo, W. A. L. Tetrahedron 2003, 59, 7.
      (c) Hein, S. J.; Lehnherr, D.; Arslan, H.; Uribe-Romo, F. J.; Dichtel, W. R. Acc. Chem. Res. 2017, 50, 2776.

    5. [5]

      (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
      (b) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.
      (c) Miyaura, N. Metal-Catalyzed Cross-Coupling Reactions of Organoboron Compounds with Organic Halides in Metal-Catalyzed Cross-Coupling Reactions (Eds. A. de Meijere, F. Diederich), WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
      (d) Li, Y.; Wang, Z. H. Org. Lett. 2009, 11, 1385.
      (e) Heffernan, G. D.; Jacobus, D. P.; Schiehser, G. A.; Shieh, H.-M.; Zhao, W. Preparation of Aryl Derivatives as Antimalarial Agents, WO 2014074778A1.
      (f) Kikuchi, Y.; Takahagi, H.; One, K.; Iwasawa, N. Chem. Asian J. 2014, 9, 1001.
      (g) Wang, Y. B.; Lin, Z. C.; Fan, H. L.; Peng, X. H. Chem. Eur. J. 2016, 22, 10382.

    6. [6]

      Hall, D. Boronic Acids:Preparation and Applications, Wiley-VCH, Weinheim, 2011.

    7. [7]

      For reviews, see: (a) Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2003, 680, 3.
      (b) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. C.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.

    8. [8]

    9. [9]

      (a) Yamamoto, E.; Izumi, K.; Horita, Y.; Ito, H. J. Am. Chem. Soc. 2012, 134, 19997.
      (b) Yamamoto, E.; Ukigai, S.; Ito, H. Chem. Sci. 2015, 6, 2943.
      (c) Mo, F. Y.; Jiang, Y. B.; Qiu, D.; Zhang, Y.; Wang, J. B. Angew. Chem., Int. Ed. 2010, 49, 1846.

    10. [10]

      For reviews: (a) Wrackmeyer, B. Heteroat. Chem. 2006, 17, 188.
      (b) Melen, R. L. Chem. Commun. 2014, 50, 1161.
      (c) Buñuel, E.; Cárdenas, D. J. Eur. J. Org. Chem. 2016, 5446.
      (d) Issaian, A.; Tu, K. N.; Blum, S. A. Acc. Chem. Res. 2017, 50, 2598. For selected recent examples:
      (e) Yang, C.-H.; Zhang, Y.-S.; Fan, W.-W.; Liu, G.-Q.; Li, Y.-M. Angew. Chem., Int. Ed. 2015, 54, 12636.
      (f) Faizi, D. J.; Issaian, A.; Davis, A. J.; Blum, S. A. J. Am. Chem. Soc. 2016, 138, 2126.
      (g) Jiang, J. L.; Zhang, Z. Q.; Fu, Y. Asian J. Org. Chem. 2017, 6, 282.
      (h) Yuan, K.; Wang, S.-N. Org. Lett. 2017, 19, 1462.
      (i) Warner, A. J.; Churn, A.; McGough, J. S.; Ingleson, M. J. Angew. Chem., Int. Ed. 2017, 56, 354.
      (j) Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635.
      (k) Jiang, T.; Bartholomeyzik, T.; Mazuela, J.; Willersinn, J.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2015, 54, 6024.
      (l) Yu, S. J.; Wu, C. Z.; Ge, S. Z. J. Am. Chem. Soc. 2017, 139, 6526.
      (m) Zuo, Y.-J.; Chang, X.-T.; Hao, Z.-M.; Zhong, C.-M. Org. Biomol. Chem. 2017, 15, 6323.
      (n) Wang, H.-M.; Zhou, H.; Xu, Q.-S.; Liu, T.-S.; Zhuang, C.-L.; Shen, M.-H.; Xu, H.-D. Org. Lett. 2018, 20, 1777.
      (o) Lv, J. H; Zhao, B. L.; liu, L.; Han, Y.; Yuan, Y.; Shi, Z. Z. Adv. Synth. Catal. 2018, 360, 4054.

    11. [11]

      Liedtke, R.; Harhausen, M.; Fröhlich, R.; Kehr, G.; Erker, G. Org. Lett. 2012, 14, 1448.  doi: 10.1021/ol300193e

    12. [12]

      Warner, A. J.; Lawson, J. R.; Fasano, V.; Ingleson, M. J. Angew. Chem., Int. Ed. 2015, 54, 11245.  doi: 10.1002/anie.201505810

    13. [13]

      For selected examples from our group's work, please see: (a) Xiao, Y. J.; Zhang, J. L. Angew. Chem., Int. Ed. 2008, 47, 1903.
      (b) Liu, F.; Yu, Y. H.; Zhang, J. L. Angew. Chem., Int. Ed. 2009, 48, 5505.
      (c) Liu, F.; Qian, D. Y.; Li, L.; Zhao, X. L.; Zhang, J. L. Angew. Chem., Int. Ed. 2010, 49, 6669.
      (d) Zhou, L. J.; Zhang, M. R.; Li, W. B.; Zhang, J. L. Angew. Chem., Int. Ed. 2014, 53, 6542.
      (e) Zhang, Z.-M.; Chen, P.; Li, W. B.; Niu, Y. F.; Zhao, X. L.; Zhang, J. L. Angew. Chem., Int. Ed. 2014, 53, 4350.
      (f) Wang, Y. D.; Zhang, P. C.; Qian, D. Y.; Zhang, J. L. Angew. Chem., Int. Ed. 2015, 54, 14849.

    14. [14]

      For selected recent examples from other group's work, please see: (a) Pathipati, S. R.; van der Werf, A.; Eriksson, L.; Selander, N. Angew. Chem., Int. Ed. 2016, 55, 11863.
      (b) Kumari, A. L. S.; Swamy, K. C. K. J. Org. Chem. 2016, 81, 1425.
      (c) Zhang, H.; Yao, Q.; Lin, L. L.; Xu, C. R.; Liu, X. H.; Feng, X. M. Adv. Synth. Catal. 2017, 359, 3454.
      (d) Pathipati, S. R.; Eriksson, L.; Selander, N. Chem. Commun. 2017, 53, 11353.
      (e) Liu, S. N.; Yang, P.; Peng, S. Y.; Zhu, C. H.; Cao, S. Y.; Li, J.; Sun, J.-T. Chem. Commun. 2017, 53, 1152.
      (f) Zheng, Y.; Chi, Y. J.; Bao, M.; Qiu, L. H.; Xu, X. F. J. Org. Chem. 2017, 82, 2129.
      (g) Du, Q. W.; Neudçrfl, J.-M.; Schmalz, H.-G. Chem. Eur. J. 2018, 24, 2379.
      (h) Kardile, R. D.; Chao, T.-H.; Cheng, M.-J.; Liu, R.-S. Angew. Chem., Int. Ed. 2020, 59, 1.

    15. [15]

      X-ray data and ORTEP depiction for compounds 3b (CCDC 1870210).

    16. [16]

      Zhou, H.; Moberg, C. J. Am. Chem. Soc. 2012, 134, 15992.  doi: 10.1021/ja3070717

    17. [17]

      Lv, J. H.; Zhao, B. L.; Yuan, Y.; Han, Y.; Shi, Z. Z. Nat. Commun. 2020, 11, 1316.  doi: 10.1038/s41467-020-15207-x

    18. [18]

      (a) Yao, T. L.; Zhang, X. X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164.
      (b) Yao, T. L.; Zhang, X. X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679.
      (c) Liu, Y. H.; Zhou, S. L. Org. Lett. 2005, 7, 4609.

    19. [19]

      Thompson, A. L. S.; Kabalka, G. W.; Akula, M. R.; Huffman, J. W. Synthesis 2005, 36, 547.

    20. [20]

      Nakanishi, W.; Matsuyama, N.; Hara, D.; Saeki, A.; Hitosugi, S.; Seki, S.; Isobe, H. Chem. Asian J. 2014, 9, 1782.  doi: 10.1002/asia.201402290

    21. [21]

      Li, Y.; Gao, L. X.; Han, F. S. Chem. Eru. J. 2010, 16, 7969.  doi: 10.1002/chem.201000971

    22. [22]

      Yao, W. B. CN 107188773, 2017.

  • 加载中
    1. [1]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    2. [2]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    3. [3]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    8. [8]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    9. [9]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    13. [13]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    14. [14]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    15. [15]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    18. [18]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    19. [19]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(16)
  • Abstract views(3163)
  • HTML views(310)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return