Citation: Ouyang Yao, Xu Xiuhua, Qing Fengling. Oxidative Coupling Reactions of Arylboronic Acids and Fluoroform-Derived AgCF3[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3426-3430. doi: 10.6023/cjoc202005022 shu

Oxidative Coupling Reactions of Arylboronic Acids and Fluoroform-Derived AgCF3

  • Corresponding author: Qing Fengling, flq@mail.sioc.ac.cn
  • Received Date: 9 May 2020
    Revised Date: 3 June 2020
    Available Online: 8 June 2020

    Fund Project: the National Natural Science Foundation of China 21991211Project supported by the National Natural Science Foundation of China (Nos. 21421002, 21991211) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000)the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the National Natural Science Foundation of China 21421002

Figures(2)

  • A silver-mediated oxidative coupling reaction of arylboronic acids with fluoroform-derived AgCF3 using K2S2O8 as oxidant was developed. This reaction provides a new route to trifluoromethylated arenes.
  • 加载中
    1. [1]

      (a) Purser, S.; Moor, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) Cametti, M.; Crousse, B.; Metrangolo, P.; Milani, R.; Resnati, G. Chem. Soc. Rev. 2012, 41, 31.
      (c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; delPozo, C. A.; Sorochinsky, E.; Fustero, S. V.; Soloshonok, A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (d) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.

    2. [2]

      (a) Mullard, A. Nat. Rev. Drug Discovery 2018, 17, 81.
      (b) Mullard, A. Nat. Rev. Drug Discovery 2019, 18, 85.
      (c) Mullard, A. Nat. Rev. Drug Discovery 2020, 19, 79.

    3. [3]

    4. [4]

      For selected examples, see: (a) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 1909.
      (b) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.
      (c) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Angew. Chem., Int. Ed. 2011, 50, 1896.
      (d) Weng, Z.; Lee, R.; Jia, W.; Yuan, Y.; Wang, W.; Feng, X.; Huang, K.-W. Organometallics 2011, 30, 3229.
      (e) Li, X.; Zhao, J.; Zhang, L.; Hu, M.; Wang, L.; Hu, J. Org. Lett. 2015, 17, 298.
      (f) Wei, Y.; Yu, L.; Lin, J.; Zheng, X.; Xiao, J. Chin. J. Chem. 2016, 34, 481.
      (g) Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan, D. W. C. Science 2018, 360, 1010.

    5. [5]

      (a) Danoun, G.; Bayarmagnai, B.; Grunberg, M. F.; Gooßen, L. J. Angew. Chem., Int. Ed. 2013, 52, 7972.
      (b) Wang, X.; Xu, Y.; Mo, F.; Ji, G.; Qiu, D.; Feng, J.; Ye, Y.; Zhang, S.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2013, 135, 10330.
      (c) Dai, J.-J.; Fang, C.; Xiao, B.; Yi, J.; Xu, J.; Liu, Z.-J.; Lu, X.; Liu, L. Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436.
      (d) Lishchynskyi, A.; Berthon, G.; Grushin, V. V. Chem. Commun. 2014, 50, 10237.
      (e) Zhang, K.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2015, 80, 7658.
      (f) Hong, J.; Wang, G.; Huo, L.; Zheng, C. Chin. J. Chem. 2017, 35, 1761.

    6. [6]

      Ye, F.; Berger, F.; Jia, H.; Ford, J.; Wortman, A.; Börgel, J.; Genicot, C.; Ritter, T. Angew. Chem., Int. Ed. 2019, 58, 14615.  doi: 10.1002/anie.201906672

    7. [7]

      (a) Yang, J.-Y.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2015, 180, 175.
      (b) Yang, J.-Y.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2016, 186, 45.
      (c) Pandey, V. K.; Anbarasan, P. RSC Adv. 2016, 6, 18525.

    8. [8]

    9. [9]

      (a) Chu, L.; Qing, F.-L. Org. Lett. 2010, 12, 5060.
      (b) Senecal, T. D.; Parsons, A. T.; Buchwald, S. L. J. Org. Chem. 2011, 76, 1174.
      (c) Jiang, X.; Chu, L.; Qing, F.-L. J. Org. Chem. 2012, 77, 1251.
      (d) Nguyen, T. V.; Ong, T. D.; Lam, A. H. M.; Pham, V. T.; Phan, N. T. S.; Truong, T. Mol. Catal. 2017, 436, 60.

    10. [10]

      (a) Xu, J.; Luo, D.-F.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Fu, Y.; Liu, L. Chem. Commun. 2011, 47, 4300.
      (b) Zhang, C.-P.; Cai, J.; Zhou, C.-B.; Wang, X.-P.; Zheng, X.; Gu, Y.-C.; Xiao, J.-C. Chem. Commun. 2011, 47, 9516.
      (c) Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.

    11. [11]

      (a) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034.
      (b) Ye, Y.; Künzi, S. A.; Sanford, M. S. Org. Lett. 2012, 14, 4979.
      (c) Li, Y.; Wu, L.; Neumann, H.; Beller, M. Chem. Commun. 2013, 49, 2628.

    12. [12]

      (a) Novák, P.; Lishchynskyi, A.; Grushin, V. V. Angew. Chem., Int. Ed. 2012, 51, 7767.
      (b) van der Born, D.; Sewing, C.; Herscheid, J. D. M.; Windhorst, A. D.; Orru, R. V. A.; Vugts, D. J. Angew. Chem., Int. Ed. 2014, 53, 11046.
      (c) Ivashkin, P.; Lemonnier, G.; Cousin, J.; Grégoire, V.; Labar, D.; Jubault, P.; Pannecoucke, X. Chem.-Eur. J. 2014, 20, 9514.

    13. [13]

      (a) Zhang, S.-L.; Bie, W.-F. Dalton Trans. 2016, 45, 17588.
      (b) Zhang, S.-L.; Bie, W.-F. RSC Adv. 2016, 6, 70902.
      (c) Zhang, S.-L.; Xiao, C.; Wan, H.-X. Dalton Trans. 2018, 47, 4779.
      (d) Xiao, C.; Zhang, S.-L. Dalton Trans. 2019, 48, 848.

    14. [14]

      Xiang, J.-X.; Ouyang, Y.; Xu, X.-H.; Qing, F.-L. Angew. Chem., Int. Ed. 2019, 58, 10320.  doi: 10.1002/anie.201905782

    15. [15]

      (a) Liu, J.-B.; Chen, C.; Chu, L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Angew. Chem., Int. Ed. 2015, 54, 11839.
      (b) Liu, J.-B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 5048.
      (c) Fu, M.-L.; Liu, J.-B.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 3702.
      (d) Zhang, K.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2017, 196, 24.
      (e) Xiang, J.-X.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2017, 203, 110.
      (f) Zhu, S.-Q.; Liu, Y.-L.; Li, H.; Xu, X.-H.; Qing, F.-L. J. Am. Chem. Soc. 2018, 140, 11613.

    16. [16]

      (a) Tyrra, W.; Naumann, D. J. Fluorine Chem. 2004, 125, 823.
      (b) Zeng, Y.; Zhang, L.; Zhao, Y.; Ni, C.; Zhao, J.; Hu, J. J. Am. Chem. Soc. 2013, 135, 2955.

    17. [17]

      (a) Ye, Y.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464.
      (b) Hafner, A.; Bräse, S. Angew. Chem., Int. Ed. 2012, 51, 3713.
      (c) Wu, X.; Chu, L.; Qing, F.-L. Angew. Chem., Int. Ed. 2013, 52, 2198.
      (d) Mao, Z.; Huang, F.; Yu, H.; Chen, J.; Yu, Z.; Xu, Z. Chem.-Eur. J. 2014, 20, 3439.
      (e) Lin, J.-S.; Liu, X.-G.; Zhu, X.-L.; Tan, B.; Liu, X.-Y. J. Org. Chem. 2014, 79, 7084.
      (f) Teng, F.; Cheng, J.; Bolm, C. Org. Lett. 2015, 17, 3166.
      (g) Wu, Y.-B.; Lu, G.-P.; Yuan, T.; Xu, Z.-B.; Wan, L.; Cai, C. Chem. Commun. 2016, 52, 13668.
      (h) Harris, C. F.; Kuehner, C. S.; Bacsa, J.; Soper, J. D. Angew. Chem., Int. Ed. 2018, 57, 1311.

    18. [18]

      (a) Weng, Z.; Lee, R.; Jia, W.; Yuan, Y.; Wang, W.; Feng, X.; Huang, K.-W. Organometallics 2011, 30, 3229.
      (b) de Salinas, S. M.; Mudarra, Á. L.; Benet-Buchholz, J.; Parella, T.; Maseras, F.; Pérez-Temprano, M. H. Chem.-Eur. J. 2018, 24, 11895.

    19. [19]

      (a) Fukuyama, T.; Nishikawa, T.; Ruy, I. Eur. J. Org. Chem. 2020, 1424.
      (b) Deng, Y.; Lu, F.; You, S.; Xia, T.; Zheng, Y.; Lu, C.; Yang, G.; Chen, Z.; Gao, M.; Lei, A. Chin. J. Chem. 2019, 37, 817.
      (c) Wang, H.; Wang, J.; Qiu, W.; Yang, F.; Liu, X.; Tang, J. Chin. J. Chem. 2010, 28, 2416.
      (d) Lin, L.; Hou, C.; Li, H.; Weng, Z. Chem.-Eur. J. 2016, 22, 2075.
      (e) Cottet, F.; Schlosser, M. Eur. J. Org. Chem. 2002, 327.

  • 加载中
    1. [1]

      Meihui Cai Yi Huang Xingxing Ma Qiuling Song . Exploring the Mysteries of the Petasis-Boronic Acid-Mannich Reaction. University Chemistry, 2025, 40(11): 184-190. doi: 10.12461/PKU.DXHX202412054

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    4. [4]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    5. [5]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    6. [6]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    7. [7]

      Huifang XIAOXiaoqian HUXiaofan YELihui LIUFen NIEYanrong DINGYing MAYanzhu LIUYongxiu LI . Coordination-enhanced leaching of bastnaesite from mixed rare earth concentrates and comprehensive recycling of valuable elements. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 141-151. doi: 10.11862/CJIC.20250049

    8. [8]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    9. [9]

      Vanita VanitaRoland SchochPascal PuphalHasan YilmazMatthias BauerOliver Clemens . Structural and electrochemical behaviour of bilayer manganite LaSr2Mn2O6.96 cathode for all-solid-state fluoride ion batteries. Acta Physico-Chimica Sinica, 2026, 42(3): 100181-0. doi: 10.1016/j.actphy.2025.100181

    10. [10]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    11. [11]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    12. [12]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    15. [15]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    16. [16]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    17. [17]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    18. [18]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    19. [19]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    20. [20]

      Qiaorong RU . Synthesis and characterization of tripyridine functionalized polyionic liquid luminescent materials. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 111-119. doi: 10.11862/CJIC.20250121

Metrics
  • PDF Downloads(4)
  • Abstract views(1816)
  • HTML views(266)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return