Citation: Qin Wenbing, Chen Jiayi, Xiong Wei, Liu Guokai. Recent Advance in Development and Application of Electrophilic Difluoromethylating Reagents[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3177-3195. doi: 10.6023/cjoc202005016 shu

Recent Advance in Development and Application of Electrophilic Difluoromethylating Reagents

  • Corresponding author: Liu Guokai, gkliu@szu.edu.cn
  • Received Date: 7 May 2020
    Revised Date: 10 June 2020
    Available Online: 24 June 2020

    Fund Project: Natural Science Foundation of Guangdong Province 2020A1515010874Natural Science Foundation of Shenzhen City KQJSCX20180328095508144Project supported by the Natural Science Foundation of Shenzhen City (Nos. KQJSCX20180328095508144) and the Natural Science Foundation of Guangdong Province (No. 2020A1515010874)

Figures(44)

  • In the past two decades, the development and application of bench-stable electrophilic difluoromethylating reagents have attracted considerable attention. Consequently, some progress in this area has been ongoing recently. Electrophilic difluoromethylating reagents play a very important role in the synthesis of fluorine-containing compounds, due to their capability of readily transferring difluoromethyl moiety (CF2H) into wide range of nucleophiles, as well as being used as difluoromethyl radical(•CF2H) precursorfor radical difluoromethylations. However, the electrophilic difluoromethylating reagents and application therein remain still underdeveloped in comparison with nucleophilic ones. The research advance in electrophilic difluoromethylating reagents in past two decades is reviewed.
  • 加载中
    1. [1]

      (a) Smart, B. E. Chem. Rev. 1996, 96, 1555.
      (b) Jeschke, P.; Baston, E.; Leroux, F. R. Mini-Rev. Med. Chem. 2007, 7, 1027 and references therein.
      (c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
      (d) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (e) Bassetto, M.; Ferla, S.; Pertusati, F. Future Med. Chem. 2015, 7, 527.

    2. [2]

      (a) Goure, W. F.; Leschinsky, K. L.; Wratten, S. J.; Chupp, J. P. J. Agric. Food Chem. 1991, 39, 981.
      (b) Pérez, R. A.; Sánchez-Brunete, C.; Miguel, E.; Tadeo, J. L. J. Agric. Food Chem. 1998, 46, 1864.
      (c) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed., Wiley-VCH, Weinheim, 2013.

    3. [3]

      (a) Kirsch, P.; Bremer, B. Angew. Chem., Int. Ed. 2000, 39, 4216.
      (b) Tasaka, T.; Takenaka, S.; Kabu, K.; Morita, Y.; Okamoto, H. Ferroelectronics 2002, 276, 83.
      (c) Boltalina, O. V.; Nakajima, T. New Fluorinated Carbons: Fundamentals and Applications, Elsevier, Amsterdam, 2016.

    4. [4]

      (a) Bégué, J. P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley-VCH, Weinheim, 2008.
      (b) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.
      (c) Gouverneur, V.; Muller, K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.

    5. [5]

    6. [6]

    7. [7]

      (a) Prakash, G. K. S.; Mandal, M.; Schweizer, S.; Petasis, N. A.; Olah, G. A. J. Org. Chem. 2002, 67, 3718.
      (b) Narjes, F.; Koehler, K. F.; Koch, U.; Gerlach, B.; Colarusso, S.; Steinkhler, C.; Brunetti, M.; Altamura, S.; De Francesco, R.; Matassa, V. G. Bioorg. Med. Chem. Lett. 2002, 12, 701.
      (c) Hu, J.; Zhang, W.; Wang. F. Chem. Commun. 2009, 7465.

    8. [8]

      (a) Li, Y.; Hu, J. Angew. Chem., Int. Ed. 2005, 44, 5882.
      (b) Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. Org. Lett. 2007, 9, 1863.

    9. [9]

      (a) Cazzola, M.; Picciolo, S.; Matera, M. G. Expert Opin. Pharmacother. 2010, 11, 441.
      (b) Kohl, B.; Sturm, E.; Rainer, G. US 4758579A, 1985.
      (c) Gajjar, D. A.; Bello, A.; Ge, Z.; Christopher, L.; Grasela, D. M. Antimicrob. Agents Chemother. 2003, 47, 2256.
      (d) Kastron, V. V.; Vitolin, R. O.; Fialkov, J. A.; Shelyazhenko, S. V. US 4219653, 1980.

    10. [10]

    11. [11]

      Umemoto, T. Chem. Rev. 1996, 96, 1757.  doi: 10.1021/cr941149u

    12. [12]

      (a) Yagupol'skii, L. M.; Kondratenko, N. Y.; Timofeeva, G. N. Zh. Org. Khim. 1984, 20, 115.
      (b) Umemoto, T.; Ishihara, S. J. Am. Chem. Soc. 1993, 115, 2156.
      (c) Umemoto, T.; Ishihara, S.; Adachi, K. J. Fluorine Chem. 1995, 74, 77.
      (d) Umemoto, T.; Ishihara, S. J. Fluorine Chem. 1999, 98, 75.
      (e) Umemoto, T.; Adachi, K. J. Org. Chem. 1994, 59, 5692.
      (f) Yang, J. J.; Kirchmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1998, 63, 2656.
      (g) Ma, J.-A.; Cahard, D. J. Org. Chem. 2003, 68, 8726.

    13. [13]

      (a) Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. Org. Lett. 2007, 9, 1863.
      (b) Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. J. Comb. Chem. 2007, 9, 920.

    14. [14]

      Yue, C.-B.; Lin, J.-H.; Cai, J.; Zhang, C.-P.; Zhao, G.; Xiao, J.-C.; Li, H. RSC Adv. 2016, 6, 35705.  doi: 10.1039/C6RA06338A

    15. [15]

      (a) Noto, N.; Koike, T.; Akita, M. Chem. Sci. 2017, 8, 6375.
      (b) Noto, N.; Tanaka, Y.; Koike, T.; Akita, M. ACS Catal. 2018, 8, 9408.

    16. [16]

      (a) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R. Jr. Org. Lett. 2014, 16, 4594.
      (b) Zhang, Z.; Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R. Jr. Org. Lett. 2015, 17, 3528.
      (c) Zhang, Z.; Tang, X.-J.; Dolbier, W. R. Jr. Org. Lett. 2015, 17, 4401.
      (d) Rong, J.; Deng, L.; Tan, P.; Ni, C.; Gu, Y.; Hu, J. Angew. Chem., Int. Ed. 2016, 55, 2743.
      (e) Fu, W.; Han, X.; Zhu, M.; Xu, C.; Wang, Z.; Ji, B.; Hao, X.-Q.; Song, M.-P. Chem. Commun. 2016, 52, 13413.
      (f) Zhang, Z.; Tang, X.-J.; Dolbier, W. R. Jr. Org. Lett. 2016, 18, 1048.
      (g) Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem. Soc. 2018, 140, 880.
      (h) Zhang, Z.; Martinez, H.; Dolbier, W. R. J. Org. Chem. 2017, 82, 2589.
      (i) Zhu, M.; Fu, W.; Wang, Z.; Xu, C.; Ji, B. Org. Biomol. Chem. 2017, 15, 9057.
      (j) Duchemin, N.; Buccafusca, R.; Daumas, M.; Ferey, V.; Arseniyadis, S. Org. Lett. 2019, 21, 8205.
      (k) Wang, Z.-S.; Chen, Y.-B.; Zhang, H.-W.; Sun, Z.; Zhu, C.; Ye, L. J. Am. Chem. Soc. 2020, 142, 3636.

    17. [17]

      (a) Lu, S.-L.; Li, X.; Qin, W.-B.; Liu, J.-J.; Huang, Y.-Y.; Wong, H. N. C.; Liu, G.-K. Org. Lett. 2018, 20, 6925.
      (b) Liu, G.-K.; Li, X.; Qin, W.-B.; Peng, X.-S.; Wong, H. N. C.; Zhang, L.; Zhang, X. Chem. Commun. 2019, 55, 7446.
      (c) Liu, G.-K.; Qin, W.-B.; Li, X.; Lin, L.-T.; Wong, H. N. C. J. Org. Chem. 2019, 84, 15948.
      (d) Liu, G.-K.; Li, X.; Qin, W.-B.; Lin, W.-F.; Lin, L.-T.; Chen, J.-Y.; Liu, J.-J. Chin. Chem. Lett. 2019, 30, 1515.

    18. [18]

      (a) Zhang, C.; Cao, H.; Wang, Z.; Zhang, C.; Chen, Q.; Xiao, J. Synlett 2010, 1089.
      (b) Liu, G.; Mori, S.; Wang, X.; Noritake, S.; Tokunaga, E.; Shibata, N. New J. Chem. 2012, 36, 1769.
      (c) Liu, G.; Wang, X.; Lu, X.; Xu, X.-H.; Tokunaga, E.; Shibata, N. ChemistryOpen 2012, 1, 227.
      (d) Liu, G.; Wang, X.; Xu, X.-H.; Lu, X.; Tokunaga, E.; Tsuzuki, S.; Shibata, N. Org. Lett. 2013, 15, 1044.

    19. [19]

      (a) Zhang, W.; Wang, F.; Hu, J. Org. Lett. 2009, 11, 2109.
      (b) Pégot, B.; Urban, C.; Bourne, A.; Le, T. N.; Bouvet, S.; Marrot, J.; Diter, P.; Magnier, E. Eur. J. Org. Chem. 2015, 3069.

    20. [20]

      (a) Prakash, G. K. S.; Zhang, Z.; Wang, F.; Ni, C.; Olah, G. A. J. Fluorine Chem. 2011, 132, 792.
      (b) Yang, Y.; Lu, X.; Liu, G.; Tokunaga, E.; Tsuzuki, S.; Shibata, N. ChemistryOpen 2012, 1, 221.

    21. [21]

      (a) Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem.-Eur. J. 2016, 22, 1262.
      (b) Noto, N.; Koike, T.; Akita, M. J. Org. Chem. 2016, 81, 7064.
      (c) Nakayama, Y.; Ando, G.; Abe, M.; Koike, T.; Akita, M. ACS Catal. 2019, 9, 6555.

    22. [22]

      (a) Zhu, J.; Liu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 9050.
      (b) Zhu, J.; Zheng, H.; Xue, X.-S.; Xiao, Y.; Liu, Y.; Shen, Q. Chin. J. Chem. 2018, 36, 1069.

    23. [23]

      Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513.  doi: 10.1039/c3cc44271c

    24. [24]

      (a) Zheng, J.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Chem.-Eur. J. 2013, 19, 15261.
      (b) Deng, X.-Y.; Lin, J.-H.; Zheng, J.; Xiao, J.-C. Chem. Commun. 2015, 51, 8805.
      (c) Liu, C.; Deng, X.-Y.; Zeng, X.-L.; Zhao, G.; Lin, J.-H.; Wang, H.; Xiao, J.-C. J. Fluorine Chem. 2016, 192, 27.

    25. [25]

      Hua, M.-Q.; Wang, W.; Liu, W.-H.; Wang, T.; Zhang, Q.; Huang, Y.; Zhu, W.-H. J. Fluorine Chem. 2016, 181, 22.  doi: 10.1016/j.jfluchem.2015.11.003

    26. [26]

      Zheng, Q.-T.; Wei, Y.; Zheng, J.; Duan, Y.-Y.; Zhao, G.; Wang, Z.-B.; Lin, J.-H.; Zheng, X.; Xiao, J.-C. RSC Adv. 2016, 6, 82298.  doi: 10.1039/C6RA20629H

    27. [27]

      Deng, X.-Y.; Lin, J.-H.; Xiao, J.-C. J. Fluorine Chem. 2015, 179, 116.  doi: 10.1016/j.jfluchem.2015.06.009

    28. [28]

      Zheng, J.; Lin, J.-H.; Yu, L.-Y.; Wei, Y.; Zheng, X.; Xiao, J.-C. Org. Lett. 2015, 17, 6150.  doi: 10.1021/acs.orglett.5b03159

    29. [29]

      (a) Reger, D. L.; Dukes, M. D. J. Organomet. Chem. 1978, 153, 67.
      (b) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.

    30. [30]

      Feng, Z.; Min, Q.-Q.; Zhang, X. Org. Lett. 2016, 18, 44.  doi: 10.1021/acs.orglett.5b03206

    31. [31]

      Deng, X.-Y.; Lin, J.-H.; Xiao, J.-C. Org. Lett. 2016, 18, 4384.  doi: 10.1021/acs.orglett.6b02141

    32. [32]

      Fu, X.-P.; Xue, X.-S.; Zhang, X.-Y.; Xiao, Y.-L.; Zhang, S.; Guo, Y.-L.; Leng, X.; Houk, K. N.; Zhang, X. Nat. Chem. 2019, 11, 948.  doi: 10.1038/s41557-019-0331-9

    33. [33]

      (a) Zheng, J.; Lin, J.-H.; Deng, X.-Y.; Xiao, J.-C. Org. Lett. 2015, 17, 532.
      (b) Wei, Y.; Yu, L.; Lin, J.; Zheng, X.; Xiao, J. Chin. J. Chem. 2016, 34, 481.

    34. [34]

      (a) Zheng, J.; Wang, L.; Lin, J.-H.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2015, 54, 13236.
      (b) Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D.-H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2017, 56, 3196.
      (c) Yu, J.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2017, 56, 16669.
      (d) Luo, J.-J.; Zhang, M.; Lin, J.-H.; Xiao, J.-C. J. Org. Chem. 2017, 82, 11206.
      (e) Chen, X.-L.; Zhou, S.-H.; Lin, J.-H.; Deng, Q.-H.; Xiao, J.-C. Chem. Commun. 2019, 55, 1410.

    35. [35]

      (a) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L. Angew. Chem., Int. Ed. 2016, 55, 1479.
      (b) Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2016, 81, 7001.
      (c) Lin, Q.-Y.; Ran, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18, 2419.
      (d) Hu, W.-Q.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2018, 208, 73.

    36. [36]

      Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 7373.  doi: 10.1021/acs.joc.7b01041

    37. [37]

      Yu, J.; Lin, J.-H.; Cao, Y.-C.; Xiao, J.-C. Org. Chem. Front. 2019, 6, 3580.  doi: 10.1039/C9QO00919A

    38. [38]

      Zhang, M.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2019, 58, 6079.  doi: 10.1002/anie.201900466

    39. [39]

      (a) Urban, C.; Macé, Y.; Cadoret, F.; Blazejewski, J. C.; Magnier, E. Adv. Synth. Catal. 2010, 352, 2805.
      (b) Urban, C.; Cadoret, F.; Blazejewski, J. C.; Magnier, E. Eur. J. Org. Chem. 2011, 4862.
      (c) Macé, Y.; Magnier, E. Eur. J. Org. Chem. 2012, 2479.

    40. [40]

      (a) Zhang, W.; Zhu, J.; Hu, J. Tetrahedron Lett. 2008, 49, 5006.
      (b) He, Z.; Luo, T.; Hu, M.; Cao, Y.; Hu, J. Angew. Chem., Int. Ed. 2012, 51, 3944.
      (c) He, Z.; Hu, M.; Luo, T.; Li, L.; Hu, J. Angew. Chem., Int. Ed. 2012, 51, 11545.

    41. [41]

      Wang, X.; Liu, G.; Xu, X.-H.; Shibata, N.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2014, 53, 1827.  doi: 10.1002/anie.201309875

  • 加载中
    1. [1]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    2. [2]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    3. [3]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    8. [8]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    13. [13]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    14. [14]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    19. [19]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(127)
  • Abstract views(3786)
  • HTML views(1163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return