Citation: Li Jing, Han Ying, Chen Chuanfeng. Recent Advances in Novel Macrocyclic Arenes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3714-3737. doi: 10.6023/cjoc202005007 shu

Recent Advances in Novel Macrocyclic Arenes

  • Corresponding author: Chen Chuanfeng, cchen@iccas.ac.cn
  • Received Date: 4 May 2020
    Revised Date: 23 May 2020
    Available Online: 29 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 91856117, 21332008)the National Natural Science Foundation of China 21332008the National Natural Science Foundation of China 91856117

Figures(38)

  • Calixarenes, pillararenes and their analogues are composed of hydroxy-or alkoxy-substituted aromatic rings bridged by methylene or methenyl groups, which can be collectively called as macrocyclic arenes. Macrocyclic arenes have attracted much attention and increasing interests because of their unique structures, easily synthesis and derivatization, electron-rich cavities and wide applications in supramolecular chemistry, and they have also become one of the most significant and studied synthetic macrocyclic hosts during the last decades. Recently, with the rapid development of macrocycles and supramolecular chemistry, various types of novel macrocyclic arenes except the classic macrocyclic arenes such as calixarenes and pillararenes have been reported. The construction and functionalization of novel macrocyclic arenes have become the new focus and hot topic of macrocyclic and supramolecular chemistry. The recent advances in the synthesis and properties of novel macrocyclic arenes are summarized. It is expected that this review will be helpful to the research of macrocyclic arenes and promote the development of macrocyclic arene chemistry.
  • 加载中
    1. [1]

      Gutsche, C. D. Calixarenes Revisited, Royal Society of Chemistry, Cambridge, 1998.

    2. [2]

      Sliwa, W.; Kozlowski, C. Calixarenes and Resorcinarenes: Synthesis, Properties and Applications, Wiley-VCH, Weinheim, Germany, 2009.

    3. [3]

      Neri, P.; Sessler, J. L.; Wang, M.-X. Calixarenes and Beyond. Springer, Switzerland, 2016.

    4. [4]

      Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.-A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.  doi: 10.1021/ja711260m

    5. [5]

      Ogoshi, T. Pillararenes, The Royal Society of Chemistry, Croydon, UK, 2016.

    6. [6]

      Chen, C.-F.; Han, Y. Acc. Chem. Res. 2018, 51, 2093.  doi: 10.1021/acs.accounts.8b00268

    7. [7]

      Schneebeli, S. T.; Cheng, C.; Hartlieb, K. J.; Strutt, N. L.; Sarjeant, A. A.; Stern, C. L.; Stoddart, J. F. Chem.-Eur. J. 2013, 19, 3860.  doi: 10.1002/chem.201204097

    8. [8]

      Wang, J.-H.; Feng, H.-T.; Zheng, Y. S. Chem. Commun. 2014, 50, 11407.  doi: 10.1039/C4CC05189K

    9. [9]

      Han, B.; Zhu, L.; Wang, X.; Bai, M.; Jiang, J. Chem. Commun. 2018, 54, 837.  doi: 10.1039/C7CC08561C

    10. [10]

      Gao, B.; Tan, L.-L.; Song, N.; Li, K.; Yang, Y.-W. Chem. Commun. 2016, 52, 5804.  doi: 10.1039/C6CC01892K

    11. [11]

      Wu, J.-R.; Wang, C.-Y.; Tao, Y.-C.; Wang, Y.; Li, C.; Yang, Y.-W. Eur. J. Org. Chem. 2018, 1321.

    12. [12]

      Dai, D.; Li, Z.; Yang, J.; Wang, C.; Wu, J.-R.; Wang, Y.; Zhang, D.; Yang, Y.-W. J. Am. Chem. Soc. 2019, 141, 4756.  doi: 10.1021/jacs.9b01546

    13. [13]

      Boinski, T.; Cieszkowski, A.; Rosa, B.; Szumna, A. J. Org. Chem. 2015, 80, 3488.  doi: 10.1021/acs.joc.5b00099

    14. [14]

      Hua, B.; Shao, L.; Zhou, J.; Yu, G. New J. Chem. 2016, 40, 4756.  doi: 10.1039/C5NJ03616J

    15. [15]

      Zafrani, Y.; Cohen, Y. Org. Lett. 2017, 19, 3719.  doi: 10.1021/acs.orglett.7b01511

    16. [16]

      Wu, J.-R.; Mu, A. U.; Li, B.; Wang, C.-Y.; Fang, L.; Yang, Y.-W. Angew. Chem., Int. Ed. 2018, 57, 9853.  doi: 10.1002/anie.201805980

    17. [17]

      Wang, X.; Wu, J.-R.; Liang, F.; Yang, Y.-W. Org. Lett. 2019, 21, 5215.  doi: 10.1021/acs.orglett.9b01827

    18. [18]

      Li, X.; Han, J.; Qin, J.; Sun, M.; Wu, J.; Lei, L.; Li, J.; Fang, L.; Yang, Y.-W. Chem. Commun. 2019, 55, 14099.  doi: 10.1039/C9CC07115F

    19. [19]

      Wu, J.-R.; Li, B.; Yang, Y.-W. Angew. Chem., Int. Ed. 2020, 59, 2251.  doi: 10.1002/anie.201911965

    20. [20]

      Liu, Z.; Wu, J.; Wang, C.; Yang, J.; Wang, Y.; Yang, Y.-W. Chin. Chem. Lett. 2019, 30, 2299.  doi: 10.1016/j.cclet.2019.10.023

    21. [21]

      Wu, J.-R.; Yang, Y.-W. J. Am. Chem. Soc. 2019, 141, 12280.  doi: 10.1021/jacs.9b03559

    22. [22]

      Lei, S.-N.; Xiao, H.; Zeng, Y.; Tung, C.-H.; Wu, L.-Z.; Cong, H. Angew. Chem., Int. Ed. 2020, 59, 10059.  doi: 10.1002/anie.201913340

    23. [23]

      Yang, W.; Samanta, K.; Wan, X.; Thikekar, T. U.; Chao, Y.; Li, S.; Du, K.; Xu, J.; Gao, Y.; Zuilhof, H.; Sue, A. C.-H. Angew. Chem., Int. Ed. 2020, 59, 3994.  doi: 10.1002/anie.201913055

    24. [24]

      Chen, C.-F.; Ma, Y.-X. Iptycene Chemistry: From Synthesis to Applications, Springer-Verlag, Berlin Heidelberg, 2013.

    25. [25]

      Han, Y.; Meng, Z.; Ma, Y.-X.; Chen, C.-F. Acc. Chem. Res. 2014, 47, 2026.  doi: 10.1021/ar5000677

    26. [26]

      Tian, X.-H.; Hao, X.; Liang, T.-L.; Chen, C.-F. Chem. Commun. 2009, 6771.

    27. [27]

      Tian, X.-H.; Chen, C.-F. Chem.-Eur. J. 2010, 16, 8072.  doi: 10.1002/chem.201000517

    28. [28]

      Xia, Y.-X.; Xie, T.; Han, Y.; Chen, C.-F. Org. Chem. Front. 2014, 1, 140.  doi: 10.1039/c3qo00055a

    29. [29]

      Li, P.-F.; Chen, C.-F. Chem. Commun. 2011, 47, 12170.  doi: 10.1039/c1cc15895c

    30. [30]

      Tian, X.-H.; Chen, C.-F. Org. Lett. 2010, 12, 524.  doi: 10.1021/ol902758g

    31. [31]

      Xia, Y.-X.; Han, Y.; Chen, C.-F. Eur. J. Org. Chem. 2014, 1976.

    32. [32]

      Zhang, G.-W.; Li, P.-F.; Meng, Z.; Wang, H.-X.; Han, Y.; Chen, C.-F. Angew. Chem., Int. Ed. 2016, 55, 5304.  doi: 10.1002/anie.201600911

    33. [33]

      Wang, J.-Q.; Li, J.; Zhang, G.-W.; Chen, C.-F. J. Org. Chem. 2018, 83, 11532.  doi: 10.1021/acs.joc.8b01437

    34. [34]

      Zhang, G.-W.; Li, P.-F.; Wang, H.-X.; Han, Y.; Chen, C.-F. Chem.- Eur. J. 2017, 23, 3735.  doi: 10.1002/chem.201605394

    35. [35]

      Zhang, G.-W.; Shi Q.; Chen, C.-F. Chem. Commun. 2017, 53, 2582.  doi: 10.1039/C7CC00600D

    36. [36]

      Shi, Q.; Han, Y.; Chen, C.-F. Chem.-Asian J. 2017, 12, 2576.  doi: 10.1002/asia.201700857

    37. [37]

      Shi, Q.; Chen C.-F. Org. Lett. 2017, 19, 3175.  doi: 10.1021/acs.orglett.7b01296

    38. [38]

      Li, J.; Shi, Q.; Han, Y.; Chen, C.-F. Beilstein J. Org. Chem. 2019, 15, 1795.  doi: 10.3762/bjoc.15.173

    39. [39]

      Zhang, G.-W.; Han, Y.-C.; Han, Y.; Wang, Y.-L.; Chen, C.-F. Chem. Commun. 2017, 53, 10433.  doi: 10.1039/C7CC05489K

    40. [40]

      Yang, X.; Mao, W.; Liu, Y.; Li, L.; Ma, D. Chin. J. Chem. 2019, 37, 575.  doi: 10.1002/cjoc.201900093

    41. [41]

      Guo, Y.; Han, Y.; Chen, C.-F. Front. Chem. 2019, 7, 543.  doi: 10.3389/fchem.2019.00543

    42. [42]

      Shi, Q.; Meng, Z.; Xiang, J.-F.; Chen, C.-F. Chem. Commun. 2018, 54, 3536.  doi: 10.1039/C8CC01570H

    43. [43]

      Zhou, H.-Y.; Han, Y.; Shi, Q.; Chen, C.-F. Eur. J. Org. Chem. 2019, 3406.

    44. [44]

      Zhou, H.-Y.; Han, Y.; Shi, Q.; Chen, C.-F. J. Org. Chem. 2019, 84, 5872.  doi: 10.1021/acs.joc.9b00229

    45. [45]

      Shi, Q.; Chen, C.-F. Chem. Sci. 2019, 10, 2529.  doi: 10.1039/C8SC05469J

    46. [46]

      Chen, H.; Fan, J.; Hu, X.; Ma, J.; Wang, S.; Li, J.; Yu, Y.; Jia, X.; Li, C. Chem. Sci. 2015, 6, 197.  doi: 10.1039/C4SC02422B

    47. [47]

      Zhou, J.; Yu, G.; Shao, L.; Hua, B.; Huang, F. Chem. Commun. 2015, 51, 4188.  doi: 10.1039/C5CC00225G

    48. [48]

      Ma, J.; Deng, H.; Ma, S.; Li, J.; Jia, X.; Li, C. Chem. Commun. 2015, 51, 6621.  doi: 10.1039/C5CC01470K

    49. [49]

      Zhou, J.; Yang, J.; Zhang, Z.; Yu, G. RSC Adv. 2016, 6, 77179.  doi: 10.1039/C6RA18691B

    50. [50]

      Ma, S.; Chen, H.; Li, J.; Jia, X.; Li, C. Chem. Asian J. 2016, 11, 3449.  doi: 10.1002/asia.201601373

    51. [51]

      Ma, J.; Meng, Q.; Hu, X.; Li, B.; Ma, S.; Hu, B.; Li, J.; Jia, X.; Li, C. Org. Lett. 2016, 18, 5740.  doi: 10.1021/acs.orglett.6b03005

    52. [52]

      Dai, L.; Ding, Z.-J.; Cui, L.; Li, J.; Jia, X.; Li, C. Chem. Commun. 2017, 53, 12096.  doi: 10.1039/C7CC06767D

    53. [53]

      Huang, X.; Zhang, X.; Qian, T.; Ma, J.; Cui, L.; Li, C. Beilstein J. Org. Chem. 2018, 14, 2236.  doi: 10.3762/bjoc.14.198

    54. [54]

      Wang, Y.; Xu, K.; Li, B.; Cui, L.; Li, J.; Jia, X.; Zhao, H.; Fang, J.; Li, C. Angew. Chem., Int. Ed. 2019, 58, 10281.  doi: 10.1002/anie.201905563

    55. [55]

      Li, B.; Wang, B.; Huang, X.; Dai, L.; Cui, L.; Li, J.; Jia, X.; Li, C. Angew. Chem., Int. Ed. 2019, 58, 3885.  doi: 10.1002/anie.201813972

    56. [56]

      Xu, K.; Zhang, Z.-Y.; Yu, C.; Wang, B.; Dong, M.; Zeng, X.; Gou, R.; Cui, L.; Li, C. Angew. Chem., Int. Ed. 2020, 59, 7214.  doi: 10.1002/anie.202000909

    57. [57]

      Zhou, J.; Yang, J.; Hua, B.; Shao, L.; Zhang, Z.; Yu, G. Chem. Commun. 2016, 52, 1622.  doi: 10.1039/C5CC09088A

    58. [58]

      Zhou, J.; Yu, G.; Li, Q.; Wang, M.; Huang, F. J. Am. Chem. Soc. 2020, 142, 2228.  doi: 10.1021/jacs.9b13548

    59. [59]

      Yang, P.; Jian, Y.; Zhou, X.; Li, G.; Deng, T.; Shen, H.; Yang, Z.; Tian, Z. J. Org. Chem. 2016, 81, 2974.  doi: 10.1021/acs.joc.6b00252

    60. [60]

      Li, G.; Zhao, L.; Yang, P.; Yang, Z.; Tian, Z.; Chen, Y.; Shen, H.; Hu, C. Anal. Chem. 2016, 88, 10751.  doi: 10.1021/acs.analchem.6b03398

    61. [61]

      Zhou, X.; Li, G.; Yang, P.; Zhao, L.; Deng, T.; Shen, H.; Yang, Z.; Tian, Z.; Chen, Y. Sens. Actuators B 2017, 242, 56.  doi: 10.1016/j.snb.2016.10.130

    62. [62]

      Li, G.; Song, X.; Yu, H.; Hu, C.; Liu, M.; Cai, J.; Zhao, L.; Chen, Y.; Yang, P. Sens. Actuators B 2018, 259, 177.  doi: 10.1016/j.snb.2017.12.033

    63. [63]

      Yang, Z.; Chen, Y.; Li, G.; Tian, Z.; Zhao, L.; Wu, X.; Ma, Q.; Liu, M.; Yang, P. Chem.-Eur. J. 2018, 24, 6087.  doi: 10.1002/chem.201705564

    64. [64]

      Boinski, T.; Cieszkowski, A.; Rosa, B.; Lesniewska, B.; Szumna, A. New J. Chem. 2016, 40, 8892.  doi: 10.1039/C6NJ01736C

    65. [65]

      Sala, P. D.; Regno, R. D.; Talotta, C.; Capobianco, A.; Hickey, N.; Geremia, S.; Rosa, M.D.; Spinella, A.; Soriente, A.; Neri, P.; Gaeta, C. J. Am. Chem. Soc. 2020, 142, 1752.  doi: 10.1021/jacs.9b12216

    66. [66]

      Boinski, T.; Szumna, A. New J. Chem. 2017, 41, 3387.  doi: 10.1039/C7NJ00039A

    67. [67]

      Han, X.-N.; Han, Y.; Chen, C.-F. J. Am. Chem. Soc. 2020, 142, 8262.  doi: 10.1021/jacs.0c00624

  • 加载中
    1. [1]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    2. [2]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    3. [3]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    4. [4]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    10. [10]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    13. [13]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    14. [14]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    15. [15]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    16. [16]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    17. [17]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    18. [18]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

Metrics
  • PDF Downloads(314)
  • Abstract views(8448)
  • HTML views(2855)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return