Citation: Sun Jing, Cao Jun, Han Ying, Yan Chao-Guo. Progress in Multicomponent Reactions Involving 1, 3-Indanedione[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4122-4146. doi: 10.6023/cjoc202005003 shu

Progress in Multicomponent Reactions Involving 1, 3-Indanedione

  • Corresponding author: Yan Chao-Guo, cgyan@yzu.edu.cn
  • Received Date: 2 May 2020
    Revised Date: 11 June 2020
    Available Online: 8 July 2020

    Fund Project: the National Natural Science Foundation of China 21572196Project supported by the National Natural Science Foundation of China (No. 21572196)

Figures(74)

  • 1, 3-Indanedione is one of typical cyclic 1, 3-dicarbonyl compounds with one methylene unit, two carbonyl groups and fused phenyl ring. Thus, it has three contiguous reactive electrophilic and nucleophilic sites. On the other hand, 1, 3-indanedione undergoes homopolymerization to form several cyclic compounds with polycarbonyl groups under acidic or basic medium. 2-Arylidene-1, 3-indanediones derived from condensation of aromatic aldehydes with 1, 3-indanedione are also reactive α, β-unsaturated carbonyl compounds. Therefore, 1, 3-indanedione has diverse reactivities and is the key substrate in domino and multicomponent reactions. It has been widely employed to construct various spiro, bridged and fused cyclic compounds. The recent achievements on multicomponent reactions involving 1, 3-indanedione from the structures of the target compounds and the important applications on the syntheses of biologically important indanone-containing carbocyclic and heterocyclic compounds are summarized. The effects of catalyst, reaction mechanism, experimental results, reaction characteristics and limitations are briefly discussed. At last, the future development on the diverse reactions of 1, 3-indanedione is also prospected.
  • 加载中
    1. [1]

      Khan, F. A.; Maalik, A. Trop. J. Pharm. Res. 2015, 14, 1937.  doi: 10.4314/tjpr.v14i10.28

    2. [2]

      (a) Tu, S. J.; Jiang, B.; Zhang, J. Y.; Jia, R. H.; Zhang, Y.; Yao, C. S. Org. Biomol. Chem. 2006, 4, 3980.
      (b) Majumder, S.; Sharma, M.; Bhuyan, P. J. Tetrahedron Lett. 2013, 54, 6868.
      (c) Ahadi, S.; Moafi, L.; Feiz, A.; Bazgir, A. Tetrahedron 2011, 67, 3954.
      (d) Liang, B.; Kalidindi, S.; Porco, J. A. Stephenson, C. Org. Lett. 2010, 12, 572.
      (e) Nishiyama, T.; Shiotsu, S.; Tsujita, H. Polym. Degrad. Stab. 2002, 76, 435.

    3. [3]

      Sharma, L. K.; Kimb, K. B.; Elliott, G. I. Green Chem. 2011, 13, 1546.  doi: 10.1039/c1gc15164a

    4. [4]

      Asadi, S.; Mohammadi Z. G. Mol. Diversity 2015, 20, 111.

    5. [5]

      (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
      (b) Peppe, C.; Chagas, R. P.; Burrow, R. A. J. Organomet. Chem. 2008, 693, 3441.
      (c) Ren, Z.; Cao, W.; Ding, W.; Wang, Y.; Wang, L. Synth. Commun. 2004, 34, 3785.
      (d) Arai, S.; Nakayama, K.; Hatano, K.; Shioiri, T. J. Org. Chem. 1998, 63, 9572.
      (e) Miyagawa, T.; Tatenuma, T.; Tadokoro, M.; Satoh, T. Tetrahedron 2008, 64, 5279.

    6. [6]

      Wang, G. W.; Gao, J. Org. Lett. 2009, 11, 2385.  doi: 10.1021/ol900451d

    7. [7]

      Yang, S. X.; Chen, J.; Wu, X. Y.; Deng, H. M.; Shao, M.; Zhang, H.; Cao, W. G. Chin. J. Org. Chem. 2010, 30, 1521(in Chinese).
       

    8. [8]

      Das, U.; Tsai, Y. L.; Lin, W. W. Org. Biomol. Chem. 2013, 11, 44.  doi: 10.1039/C2OB26943K

    9. [9]

      Nemcsok, T.; Rapi, Z.; Bagi, P.; Olah, A.; Keglevich, G.; Bako, P. Catal. Lett. 2020, 150, 930.  doi: 10.1007/s10562-019-03013-0

    10. [10]

      Banothu, J.; Basavoju, S.; Bavantula, R. J. Heterocycl. Chem. 2015, 52, 853.  doi: 10.1002/jhet.2059

    11. [11]

      Liu, R. Z.; Shi, R. G.; Sun, J.; Yan, C. G. Org. Chem. Front. 2017, 4, 354.  doi: 10.1039/C6QO00615A

    12. [12]

      Jiang, Y. H.; Sun, J.; Sun, Q.; Yan, C. G. Asian J. Org. Chem. 2017, 6, 862.  doi: 10.1002/ajoc.201700125

    13. [13]

      Hu, F.; Wei, Y.; Shi, M. Tetrahedron 2012, 68, 7911.  doi: 10.1016/j.tet.2012.07.013

    14. [14]

      Zhan, G.; Shi, M. L.; He, Q.; Lin, W. J.; Ouyang, Q.; Du, W.; Chen, Y. C. Angew. Chem., Int. Ed. 2016, 55, 2147.  doi: 10.1002/anie.201510825

    15. [15]

      Yang, Y.; Jiang, Y.; Du, W.; Chen, Y. C. Chem.-Eur. J. 2020, 26, 1754.  doi: 10.1002/chem.201904930

    16. [16]

      Lu, Y. L.; Sun, J.; Jiang, Y. H.; Yan, C. G. RSC Adv. 2016, 6, 50471.  doi: 10.1039/C6RA02358D

    17. [17]

      Ramachary, D. B.; Reddy, T. P.; Kumar, A. S. Org. Biomol. Chem. 2016, 14, 6517.  doi: 10.1039/C6OB01009A

    18. [18]

      Manjappa, K. B.; Peng, Y. T.; Jhang, W. F.; Yang, D. Y. Tetrahedron 2016, 72, 853.  doi: 10.1016/j.tet.2015.12.056

    19. [19]

      Shen, G. L.; Sun, J.; Yan, C. G. Chin. J. Chem. 2016, 34, 412.  doi: 10.1002/cjoc.201500896

    20. [20]

      Jin, G.; Sun, J.; Yan, C. G. RSC Adv. 2016, 6, 84379.  doi: 10.1039/C6RA16838H

    21. [21]

      Shi, R. G.; Sun, J.; Yan, C. G. ACS Omega 2017, 2, 7820.  doi: 10.1021/acsomega.7b01391

    22. [22]

      Liu, C. Z.; Han, Y.; Qi, W. J.; Yan, C. G. Heterocycl. Commun. 2016, 22, 301.

    23. [23]

      Qi, W. J.; Han, Y.; Liu, C. Z.; Yan, C. G. Synthesis 2016, 48, 4465.  doi: 10.1055/s-0036-1588309

    24. [24]

      Chen, L.; Sun, J.; Huang, Y.; Zhang, Y.; Yan, C. G. Sci. Rep. 2017, 7, 12418.  doi: 10.1038/s41598-017-12361-z

    25. [25]

      Huang, Y.; Sun, J.; Yan, C. G. ChemistrySelect 2017, 2, 10496.  doi: 10.1002/slct.201702162

    26. [26]

      Zhao, B.; Liang, H. W.; Yang, J.; Yang, Z.; Wei, Y. ACS Catal. 2017, 7, 5612.  doi: 10.1021/acscatal.7b01876

    27. [27]

      Yu, J.; Chien, H.; Lin, Y.; Karanam, P.; Chen, Y.; Lin, W. W. Chem. Commun. 2018, 54, 9921.  doi: 10.1039/C8CC05693E

    28. [28]

      Chen, Y. R.; Ganapuram, M. R.; Hsieh, K. H.; Chen, K. H.; Karanam, P.; Vagh, S.; Liou, Y. C.; Lin, W. W. Chem. Commun. 2018, 54, 12702.  doi: 10.1039/C8CC07271J

    29. [29]

      Duan, J. D.; Mao, Y. Y.; Zhang, L.; Zhu, N.; Fang, Z.; Guo, K. Adv. Synth. Catal. 2020, 362, 695.  doi: 10.1002/adsc.201901333

    30. [30]

      Huang, Y.; Fang, H. L.; Huang, Y. X.; Sun, J.; Yan, C. G. J. Org. Chem. 2019, 84, 12437.  doi: 10.1021/acs.joc.9b01920

    31. [31]

      (a) Qiu, X. L.; Meng, W. D.; Qing, F. L. Tetrahedron 2004, 60, 6711.
      (b) Qiu, X. L.; Qing, F. L. Eur. J. Org. Chem. 2011, 3261.
      (c) Smits, R.; Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37, 1727.
      (d) Acena, J. L.; Simon-Fuentes, A.; Fustero, S. Curr. Org. Chem. 2010, 14, 928.
      (e) March, T. L.; Johnston, M. R.; Duggan, P. J.; Gardiner, J. Chem. Biodiversity 2012, 9, 2410.
      (f) Remete, A. M.; Nonn, M.; Fustero, S.; Fülöp, F.; Kiss, L. Tetrahedron 2018, 74, 6367.

    32. [32]

      (a) Yoder, N. C.; Jumar, K. Chem. Soc. Rev. 2002, 31, 335.
      (b) Akcay, G.; Kumar, K. J. Fluorine Chem. 2009, 130, 1178.
      (c) Salwiczek, M.; Nyakatura, E. K.; Gerling, U. I. M.; Ye, S.; Koksch, B. Chem. Soc. Rev. 2012, 41, 2135.
      (d) Marsh, E.; Neil, G. Acc. Chem. Res. 2014, 47, 2878.
      (e) Berger, A. A.; Völler, J. S.; Budisa, N.; Koksch, B. Acc. Chem. Res. 2017, 50, 2093.
      (f) Huhmann, S.; Koksch, B. Eur. J. Org. Chem. 2018, 3667.

    33. [33]

      Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.  doi: 10.1021/acs.chemrev.5b00392

    34. [34]

      Smits, R. C.; Cadicamo, D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37, 1727.  doi: 10.1039/b800310f

    35. [35]

      Winter, M.; Faust, K.; Himmelsbach, M.; Waser, M. Org. Biomol. Chem. 2019, 17, 5731.  doi: 10.1039/C9OB01134J

    36. [36]

      Li, Y. M.; Zhang, H. K.; Wei, R.; Miao, Z. W. Adv. Synth. Catal. 2017, 359, 4158.  doi: 10.1002/adsc.201701013

    37. [37]

      Rajawat, A.; Khandelwal, S.; Kumar, M. RSC Adv. 2014, 4, 5105.  doi: 10.1039/c3ra44600j

    38. [38]

      Khandelwal, S.; Tailor, Y. K.; Kumar, M. J. Mol. Liq. 2016, 215, 345.  doi: 10.1016/j.molliq.2015.12.015

    39. [39]

      Tailor, Y. K.; Khandelwal, S.; Jain, H. K. Curr. Org. Synth. 2015, 12, 484.  doi: 10.2174/157017941204150522190425

    40. [40]

      Khandelwal, S.; Rajawat, A.; Tailor, K. Y.; Kumar, M. Comb. Chem. High Throughput Screening 2014, 17, 763.  doi: 10.2174/1386207317666141016125218

    41. [41]

      Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. RSC Adv. 2015, 5, 48675.  doi: 10.1039/C5RA05746A

    42. [42]

      Rushell, E.; Tailor, Y. K.; Khandelwal, S.; Verma, K.; Agarwal, M.; Kumar, M. New J. Chem. 2019, 43, 12462.  doi: 10.1039/C9NJ02694K

    43. [43]

      Yang, S. M.; Karanam, P.; Wang, M.; Jang, Y. J.; Yeh, Y. S.; Tseng, P. Y.; Ganapuram, M. R.; Liou, Y. C.; Lin, W. W. Chem. Commun. 2019, 55, 13981.

    44. [44]

      Majumder, S.; Sharma, M.; Bhuyan, P. J. Tetrahedron Lett. 2013, 54, 6868.  doi: 10.1016/j.tetlet.2013.10.023

    45. [45]

      Wang, X. H.; Yan, C. G. Synthesis 2014, 46, 1059.  doi: 10.1055/s-0033-1340815

    46. [46]

      Addla, D.; Bhima; Sridhar, B.; Devi, A.; Kantevari, S. Bioorg. Med. Chem. Lett. 2012, 22, 7475.  doi: 10.1016/j.bmcl.2012.10.042

    47. [47]

      Yang, W. J.; Zhang, J.; Sun, J.; Yan, C. G. Eur. J. Org. Chem. 2016, 5423.

    48. [48]

      Mohammad, H. R.; Mohammad, H. M.; Razieh, M. J. Chem. Res. 2017, 41, 430.  doi: 10.3184/175815517X14981249895596

    49. [49]

      Pelit, E. Chem. Sci. Int. J. (CSIJ) 2017, 20, 1.

    50. [50]

      Li, M. M.; Duan, C. S.; Yu, Y. Q.; Xu, D. Z. Dyes Pigm. 2018, 150, 202.  doi: 10.1016/j.dyepig.2017.12.007

    51. [51]

      Maleki, A.; Yeganeh, N. N. Appl. Organomet. Chem. 2017, 31, e3814.  doi: 10.1002/aoc.3814

    52. [52]

      Rather, R. A.; Siddiqui, Z. N. Appl. Organomet. Chem. 2019, 33, e5176.

    53. [53]

      Leila, Z. F.; Mohammad, N.; Samira, N. K. J. Organomet. Chem. 2019, 894, 18.  doi: 10.1016/j.jorganchem.2019.05.004

    54. [54]

      Hernandez, J. O.; Lizarazo, C.; Cobo, J.; Portilla, J. RSC Adv. 2019, 9, 27318.  doi: 10.1039/C9RA04682H

    55. [55]

      Bagheri, M.; Gholamzadeh, P.; Ziarani, G. M.; Badiei, A. Res. Chem. Intermed. 2019, 45, 3301.  doi: 10.1007/s11164-019-03740-4

    56. [56]

      Mohammadi, A.; Mohammad, B.; Nasri, S. RSC Adv. 2019, 9, 16525.  doi: 10.1039/C9RA03214B

    57. [57]

      Luo, Q.; Huang, R.; Xiao, Q.; Kong, L. B.; Lin, J.; Yan, S. J. ACS Omega 2019, 4, 6637.  doi: 10.1021/acsomega.9b00407

    58. [58]

      Gao, Y.; Liu, D. H.; Fu, Z. Q.; Huang, W. Org. Lett. 2019, 21, 926.  doi: 10.1021/acs.orglett.8b03892

    59. [59]

      Cao, J.; Sun, J.; Yan, C. G. Org. Biomol. Chem. 2018, 16, 4170.  doi: 10.1039/C8OB00144H

    60. [60]

      Chang, Y. P.; Gurubrahamam, R.; Chen, K. M. Org. Lett. 2015, 17, 2908.  doi: 10.1021/acs.orglett.5b01040

    61. [61]

      Reddy, G. M.; Ko, C. T.; Hsieh, K. H.; Lee, C. J.; Das, U.; Lin, W. W. J. Org. Chem. 2016, 81, 2420.  doi: 10.1021/acs.joc.5b02921

    62. [62]

      Yang, R. Y.; Sun, J.; Yan, C. G. ACS Omega 2018, 3, 5406.  doi: 10.1021/acsomega.8b00464

    63. [63]

      Champetter, P.; Castillo-Aguilera, O.; Taillier, C. Briere, J. F.; Dalla, V.; Oudeyer, S.; Comesse, S. Eur. J. Org. Chem. 2019, 7703.

    64. [64]

      Yang, W. J.; Fang, H. L.; Sun, J.; Yan, C. G. ACS Omega 2019, 4, 13553.  doi: 10.1021/acsomega.9b01960

    65. [65]

      Sun, J.; Yang, R. Y.; Zhan, S. C.; Yan, C. G. ChemistrySelect 2019, 4, 10100.  doi: 10.1002/slct.201902619

    66. [66]

      Zhan, S. C.; Sun, J.; Liu, R. Z.; Yan, C. G. Org. Biomol. Chem. 2020, 18, 163.  doi: 10.1039/C9OB02013F

    67. [67]

      Ye, R.; Yan, C. G. Eur. J. Org. Chem. 2019, 5882.

    68. [68]

      (a) Kohlhagen, G.; Paull, K.; Cushman, M.; Nagafuji, P.; Pommier, Y. Mol. Pharmacol. 1998, 54, 50.
      (b) Strumberg, D.; Pommier, Y.; Paull, K.; Jayaraman, M.; Nagafuji, P.; Cushman, M. J. Med. Chem. 1999, 42, 446.
      (c) Cushman, M.; Jayaraman, M.; Vroman, J. A.; Fukunaga, A. K.; Fox, B. M.; Kohlhagen, G.; Strumberg, D.; Pommier, Y. J. Med. Chem. 2000, 43, 3688.

    69. [69]

      (a) Nagarajan, M.; Morrell, A.; Ioanoviciu, A.; Antony, S.; Kohlhagen, G.; Agama, K.; Hollingshead, M.; Pommier, Y.; Cushman, M. J. Med. Chem. 2006, 49, 6283.
      (b) Morrell, A.; Placzek, M.; Parmley, S.; Antony, S.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2007, 50, 4419.
      (c) Kiselev, E.; DeGuire, S.; Morrell, A.; Agama, K.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2011, 54, 6106.
      (d) Kiselev, E.; Agama, K.; Pommier, Y.; Cushman, M. J. Med. Chem. 2012, 55, 1682.
      (e) Nguyen, T. X.; Abdelmalak, M.; Marchand, C.; Agama, K.; Pommier, Y.; Cushman, M. J. Med. Chem. 2015, 58, 3188.
      (f) Lv, P. C.; Elsayed, M. S. A.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. J. Med. Chem. 2016, 59, 4890.

    70. [70]

      Huang, C. Y.; Kavala, V.; Kuo, C. W.; Konala, A.; Yang, T. H.; Yao, C. F. J. Org. Chem. 2017, 82, 1961.  doi: 10.1021/acs.joc.6b02814

    71. [71]

      Abdelrazek, F. M.; Metz, P.; Jaeger, A. J. Heterocycl. Chem. 2019, 56, 1939.  doi: 10.1002/jhet.3572

    72. [72]

      Eisert, B.; Geiss, F. Chem. Ber. 1961, 94, 929.  doi: 10.1002/cber.19610940410

    73. [73]

      Drew, M. G. B.; Vickery, B.; Willey, G. R. J. Chem. Soc., Perkin Trans. 2 1982, 1297.

    74. [74]

      Bello, K. A.; Cheng, L.; Griffiths, J. J. Chem. Soc., Perkin Trans. 2 1987, 815.

    75. [75]

      Payili, N.; Rekula, S. R.; Aitha, A.; Mutha, A. K.; Naidu, C. G.; Yennam, S. Org. Biomol. Chem. 2019, 17, 9442.  doi: 10.1039/C9OB01900F

    76. [76]

      Zhang, L.; Duan, J. D.; Xu, G. C.; Ding, X. J.; Mao, Y. Y.; Rong, B. S.; Zhu, N.; Fang, Z.; Li, Z. J.; Guo. K. J. Org. Chem. 2020, 85, 2532.  doi: 10.1021/acs.joc.9b03238

    77. [77]

      Abdelrazek, F. M.; Metz, P.; Jaeger, A. J. Heterocycl. Chem. 2019, 56, 1939.  doi: 10.1002/jhet.3572

    78. [78]

      Amsharov, K. Y.; Jansen, M. J. Org. Chem. 2008, 73, 2931.  doi: 10.1021/jo7027008

    79. [79]

      Cao, J.; Sun, J.; Yan, C. G. Org. Biomol. Chem. 2019, 17, 9008.  doi: 10.1039/C9OB01779H

    80. [80]

      Wu, M. C.; Yang, J. H, ; Luo, F.; Cheng, C. G.; Zhu, G. G. Org. Biomol. Chem. 2019, 17, 5684.  doi: 10.1039/C9OB00836E

    81. [81]

      Cao, J.; Sun, J.; Yan, C. G. J. Org. Chem. 2020, 85, 2168.  doi: 10.1021/acs.joc.9b02911

    82. [82]

      Chen, R.; Xu, S.; Fan, X.; Li, H.; Tang, Y.; He, Z. J. Org. Biomol. Chem. 2015, 13, 398.  doi: 10.1039/C4OB01927J

    83. [83]

      Zhang, Y. Y.; Han, Y.; Sun, J.; Yan, C. G. ChemistrySelect 2017, 2, 7382.  doi: 10.1002/slct.201701348

    84. [84]

      Yang, W. J.; Zhang, J.; Sun, J.; Xie, Y. J.; Yan, C. G. Tetrahedron 2017, 73, 3387.  doi: 10.1016/j.tet.2017.05.019

    85. [85]

      Manick, A. D.; Salgues, B.; Parrain, J. L.; Zaborova, E.; Fages, F.; Amatore, M.; Commeiras L. Org. Lett. 2020, 22, 1894.  doi: 10.1021/acs.orglett.0c00235

    86. [86]

      Liegeois, J. F.; Bruhwyler, J.; Rogister, F.; Delarge, J. Curr. Med. Chem. 1995, 1, 471.

    87. [87]

      Peters, J. U.; Galley, G.; Jacobsen, H.; Czech, C.; DavidPierson, P.; Kitas, E. A.; Ozmen, L. Bioorg. Med. Chem. Lett. 2007, 17, 5918.  doi: 10.1016/j.bmcl.2007.07.078

    88. [88]

      Fuwa, H.; Takahashi, Y.; Konno, Y.; Watanabe, N.; Miyashita, H.; Sasaki, M.; Natsugari, H.; Kan, T.; Fukuyama, T.; Tomita, T.; Iwatsubo, T. ACS Chem. Biol. 2007, 2, 408.  doi: 10.1021/cb700073y

    89. [89]

      Shi, R. G.; Wang, X. H.; Liu, R. Z.; Yan, C. G. Chem. Commun. 2016, 52, 6280.  doi: 10.1039/C6CC00525J

    90. [90]

      Samineni, R.; Srihari, P.; Mehta, G. Org. Lett. 2016, 18, 2832.  doi: 10.1021/acs.orglett.6b01078

    91. [91]

      Yao, Q. Y.; Kong, L. K.; Wang, M. D.; Yuan, Y.; Sun, R. Z.; Li, Y. Z. Org. Lett. 2018, 20, 1744.  doi: 10.1021/acs.orglett.8b00206

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    9. [9]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    10. [10]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    13. [13]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    16. [16]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    17. [17]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

Metrics
  • PDF Downloads(139)
  • Abstract views(5915)
  • HTML views(1168)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return