Citation: Liu Yang, Lin Liqing, Han Yinghui, Liu Yingjie. Application of Iodine and Iodide in Photocatalysis Organic Synthesis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4216-4227. doi: 10.6023/cjoc202004053 shu

Application of Iodine and Iodide in Photocatalysis Organic Synthesis

  • Corresponding author: Liu Yang, 348596994@qq.com Liu Yingjie, liuyj691@nenu.edu.cn
  • Received Date: 30 April 2020
    Revised Date: 10 June 2020
    Available Online: 24 June 2020

    Fund Project: the Young Innovative Talents of Harbin University of Commerce 2016QN056the Harbin Business University Youth Reserve Talent Project 2019CX36the Excellent Youth Project of Heilongjiang Natural Science Foundation YQ2019B004Project supported by the Excellent Youth Project of Heilongjiang Natural Science Foundation (No. YQ2019B004), the Young Innovative Talents of Harbin University of Commerce (No. 2016QN056) and the Harbin Business University Youth Reserve Talent Project (No. 2019CX36)

Figures(13)

  • Photoredox catalysis has become a universal tool to catalyze a wide variety of chemical reactions with high selectivity under mild conditions. However, traditional photocatalysis relies heavily on photocatalysts with the problems such as high price and environmental pollution. Because iodine and iodide have the advantages of cheap, non-toxic and unique photoreactivity, their application in photochemical synthesis has attracted more and more attention in recent years. The research progress of photo-redox catalysis reactions mediated by iodine and iodide in recent years is summarized, and their future outlook is also discussed.
  • 加载中
    1. [1]

      Hu, A.-Z.; Tang, C.-Q. J. Funct. Mater. 2001, 32, 586(in Chinese).  doi: 10.3321/j.issn:1001-9731.2001.06.008

    2. [2]

      (a) Liu, Y.-Y.; Liang, D.; Lu, L.-Q.; Xiao, W.-J. Chem. Commun. 2019, 55, 4853.
      (b) Li, F.-Y.; Tian, D.; Fan, Y.-F.; Lee, R.; Lu, G.; Yin, Y.; Qiao, B. Nat. Commun. 2019, 10, 1774.
      (c) Cavedon, C.; Madani, A.; Seeberger, P. H.; Perter, B. Org. Lett. 2019, 21, 5331.
      (d) Fabry, D. C.; Zoller, J.; Rueping, M. Org. Chem. Front. 2019, 6, 2635.
      (e) DiMeglio, J. L.; Breuhaus Alvarez, J. L.; Li, S. Q.; Bartlett, B. M. ACS Catal. 2019, 9, 5732.

    3. [3]

      (a) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
      (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (c) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, 49, 1911.

    4. [4]

      (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
      (b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985.
      (d) Marzo, L.; Pagire, S. K.; Reiser, O. B. Angew. Chem., Int. Ed. 2018, 57, 10034.

    5. [5]

      (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
      (c) Cherevatskaya, M.; König, B. Russ. Chem. Rev. 2014, 83, 183.
      (d) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473.
      (e) Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349.
      (f) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
      (g) Hari, D. P.; Kçnig, B. Chem. Commun. 2014, 50, 6688.
      (h) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600.
      (i) Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Science 2014, 346, 725.

    6. [6]

      (a) Liu, Y.; Zhang, M.; Tung, C.-H.; Wang, Y. ACS Catal. 2016, 6, 8389.
      (b) Lang, X.; Ma, W.; Chen, C.; Ji, H.; Zhao, J. Acc. Chem. Res. 2014, 47, 355.
      (c) Kisch, H. Angew. Chem., Int. Ed. 2013, 52, 812.
      (d) Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.

    7. [7]

      Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329.  doi: 10.1002/anie.201204835

    8. [8]

    9. [9]

      Brown, R. L.; Klemperer, W. J. Chem. Phys. 1964, 41, 3072.  doi: 10.1063/1.1725680

    10. [10]

      (a) Meadows, L. F.; Noyes, R. M.; J. Am. Chem. Soc. 1960, 82, 1872.
      (b) Olmsted, J.; Karal, G. J. Am. Chem. Soc. 1972, 94, 3305.
      (c) Luther, G. W.; Wu, J.; Cullen, J. B. ACS Catal. 1995, 244, 135.

    11. [11]

      (a) Gopal, P. R.; Prabakar, A. C.; Chandrashekar, E. R. R.; Bhaskar, B. V.; Somaiah, P. V. J. Chin. Chem. Soc. 2013, 60, 639.
      (b) Ghosh, N.; Sheldrake, H. M.; Searcey, M. P. K. Curr. Top. Med. Chem. 2009, 9, 1494.
      (c) Zechmeister, K.; Brandl, F.; Hoppe, W.; Hecker, E.; Opferkuch, H. J.; Adolf, W. Tetrahedron Lett. 1970, 11, 4075.

    12. [12]

      (a) Nani, R. R.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7304.
      (b) Faust, R. Angew. Chem., Int. Ed. 2000, 39, 2495.

    13. [13]

      (a) Gopinath, P.; Chandrasekaran, S. J. Org. Chem. 2011, 76, 700.
      (b) Korotkov, V. S.; Larionov, O. V.; Hofmeister, A.; Magull, J.; de Meijere, A. J. Org. Chem. 2007, 72, 7504.
      (c) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 16014.

    14. [14]

      (a) Zhang, Y.; Qian, R.; Zheng, X.; Zeng, Y.; Sun, J.; Chen, Y.; Ding, A.; Guo, H. Chem. Commun. 2015, 51, 54.
      (b) Dao, H. T.; Baran, P. S. Angew. Chem., Int. Ed. 2014, 53, 14382.
      (c) Piou, T.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 11292.
      (d) Alexakis, A.; Krause, N.; Woodward, S. Copper-Catal. Asymmetric Synth. 2014, 20, 3.
      (e) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Synthesis 2014, 46, 979.

    15. [15]

      (a) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
      (b) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
      (c) Doyle, M. P. Chem. Rev. 1986, 86, 919.
      (d) Bolsønes, H.; Bonge-Hansen, H.; Bonge-Hansen, T. Synlett 2014, 25, 221.
      (e) Nani, R. R.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7304.
      (f) Marcoux, D.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 6970.
      (g) Pons, A.; Beucher, H.; Ivashkin, P.; Lemonnier, G.; Poisson, T.; Charette, A. B.; Jubault, P.; Pannecoucke, X. Org. Lett. 2015, 17, 1790.

    16. [16]

      (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323.
      (b) Taillemaud, S.; Diercxsens, N.; Gagnon, A.; Charette, A. B. Angew. Chem., Int. Ed. 2015, 54, 14108.

    17. [17]

      Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.  doi: 10.1021/ja01084a034

    18. [18]

      Kulinkovich, O. G.; Sviridov, S. V.; Vasilevski, D. A. Synthesis 1991, 234.

    19. [19]

      (a) Dhakal, R. C.; Dieter, R. K. J. Org. Chem. 2013, 78, 12426.
      (b) Ferrary, T.; David, E.; Milanole, G.; Besset, T.; Jubault, P.; Pannecoucke, X. Org. Lett. 2013, 15, 5598.
      (c) Aitken, L. S.; Hammond, L. E.; Sundaram, R.; Shankland, K.; Brown, G. D.; Cobb, A. J. A. Chem. Commun. 2015, 51, 13558.
      (d) Jiang, K.; Chen, Y. Tetrahedron Lett. 2014, 55, 2049.

    20. [20]

      Usami, K.; Nagasawa, Y.; Yamaguchi, E.; Tada, N.; Itoh, A. Org. Lett. 2016, 18, 8.  doi: 10.1021/acs.orglett.5b02957

    21. [21]

      (a) Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. 1985, 24, 94.
      (b) Picman, A. K. Biochem. Syst. Ecol. 1986, 14, 255.
      (c) Nefkens, G. H. L.; Thuring, J. W. J. F.; Beenakkers, M. F. M.; Zwanenburg, B. J. Agric. Food Chem. 1997, 45, 2273.
      (d) Mangnus, E. M.; Zwanenburg, B. J. J. Agric. Food Chem. 1992, 40, 1066.
      (e) Fang, B.; Xie, X.; Zhao, C.; Jing, P.; Li, H.; Wang, Z.; Gu, J.; She, X. J. Org. Chem. 2013, 78, 6338.

    22. [22]

      Selected examples for Bronsted acid mediated cyclization:(a) Nair, V.; Prabhakaran, J.; George, T. G. Tetrahedron 1997, 53, 15061.
      (b) Taylor, S. K. Synthesis 1998, 1009.
      (c) Ramachandran, P. V.; Krzeminski, M. P.; Reddy, M. V. R.; Brown, H. C. Tetrahedron:Asymmetry 1999, 10, 11.
      (d) Sibrian-Vazquez, M.; Spivak, D. A. Synlett 2002, 1105.
      (e) Zhao, J.; Burgess, K. Org. Lett. 2009, 11, 2053.
      (f) Jha, V.; Kondekar, N. B. Org. Lett. 2010, 12, 2762.
      (g) Qabaja, G.; Wilent, J. E.; Benavides, A. R.; Bullard, G. E.; Peterson, K. S. Org. Lett. 2013, 15, 1266.
      (h) Wilent, J.; Peterson, K. S. J. Org. Chem. 2014, 79, 2303.
      (i) Jha, V.; Kumar, P. RSC Adv. 2014, 4, 3238.

    23. [23]

      Selected examples for Lewis acid mediated cyclization:(a) Yang, C.-G.; Reich, N. W.; Shi, Z.; He, C. Org. Lett. 2005, 7, 4553.
      (b) Yeh, M.-C. P.; Lee, Y.-C.; Young, T.-C. Synthesis 2006, 3621.
      (c) Toullec, P. Y.; Genin, E.; Antoniotti, S.; Genet, J.-P.; Michelet, V. Synlett 2008, 707.
      (d) Gooßen, L. J.; Ohlmann, D. M.; Dierker, M. Green Chem. 2010, 12, 197.
      (e) Valerio, V.; Petkova, D.; Madelaine, C.; Maulide, N. Chem.-Eur. J. 2013, 19, 2606.
      (f) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Lett. 2013, 15, 4838.
      (g) Shu, X.-Z.; Nguyen, S. C.; He, Y.; Oba, F.; Zhang, Q.; Canlas, C.; Somorjai, G. A.; Alivisatos, A. P.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 7083.
      (h) Zheng, M.; Chen, P.; Huang, L.; Wu, W.; Jiang, H. Org. Lett. 2017, 19, 5756.

    24. [24]

      Selected examples for oxidative or reductive cyclization:(a) Taylor, S. K.; Chmiel, N. H.; Simons, L. J.; Vyvyan, J. R. J. Org. Chem. 1996, 61, 9084.
      (b) Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stolts, B. M. Angew. Chem., Int. Ed. 2003, 42, 2892.
      (c) Tellitu, I.; Serna, S.; Herrero, M. T.; Moreno, I.; Domínguez, E.; SanMartin, R. J. Org. Chem. 2007, 72, 1526.
      (d) Dohi, T.; Takenaga, N.; Goto, A.; Maruyama, A.; Kita, Y. Org. Lett. 2007, 9, 3129.
      (e) Shu, C.; Liu, M.-Q.; Sun, Y.-Z.; Ye, L.-W. Org. Lett. 2012, 14, 4958.
      (f) Tada, N.; Ishigami, T.; Cui, L.; Ban, K.; Miura, T.; Itoh, A. Tetrahedron Lett. 2013, 54, 256.
      (g) Xie, X.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 3767.
      (h) Duhamel, T.; Muñiz, K. Chem. Commun. 2019, 55, 933.

    25. [25]

      Selected examples for cyclizative lactonization:(a) Kishida, A.; Nagaoka, H. Tetrahedron Lett. 2008, 49, 6393.
      (b) Murphy, S. K.; Dong, V. M. J. Am. Chem. Soc. 2013, 135, 5553.
      (c) Zhang, Q.-B.; Ban, Y.-L.; Zhou, D.-G.; Zhou, P.-P.; Wu, L.-Z.; Liu, Q. Org. Lett. 2016, 18, 5256.
      (d) Sakai, N.; Horikawa, S.; Ogiwara, Y. RSC Adv. 2016, 6, 81763.

    26. [26]

      Maejima, S.; Yamaguchi, E.; Itoh, A. ACS Omega 2019, 4, 4856.  doi: 10.1021/acsomega.9b00333

    27. [27]

      Maejima, S.; Yamaguchi, E.; Itoh, A. J. Org. Chem. 2019, 84, 9519.  doi: 10.1021/acs.joc.9b01081

    28. [28]

      Takedaa, M.; Maejima, S.; Yamaguchi, E.; Itoh, A. Tetrahedron 2019, 60, 151284.  doi: 10.1016/j.tetlet.2019.151284

    29. [29]

      For reviews on the reactions of alkynes, see: (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285.
      (b) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
      (c) Willis, M. C. Chem. Rev. 2010, 110, 725.
      (d) Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev. 2011, 111, 2937.
      (e) Gilmore, K.; Alabugin, I. V. Chem. Rev. 2011, 111, 6513.
      (f) Wille, U. Chem. Rev. 2013, 113, 813.
      (g) Salvio, R.; Moliterno, M.; Bella, M. Asian J. Org. Chem. 2014, 3, 340.
      (h) Quintero-Duque, S.; Dyballa, K. M.; Fleischer, I. Tetrahedron Lett. 2015, 56, 2634.
      (i) Gao, P.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem.-Eur. J. 2015, 21, 7648.
      (j) Besset, T.; Poisson, T.; Pannecoucke, X. Eur. J. Org. Chem. 2015, 2765.
      (k) Hassan, S.; Mueller, T. J. J. Adv. Synth. Catal. 2015, 357, 617.
      (l) Fang, G.; Bi, X. Chem. Soc. Rev. 2015, 44, 8124.

    30. [30]

      For reviews on C≡C cleavage, see: (a) Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2009, 82, 778.
      (b) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47, 1100.
      (c) Assa, C. Synthesis 2011, 3389.
      (d) Ruhland, K. Eur. J. Org. Chem. 2012, 2683.
      (e) Allpress, C. J.; Berreau, L. M. Coord. Chem. Rev. 2013, 257, 3005.
      (f) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
      (g) Liu, H.; Feng, M.; Jiang, X. Chem.-Asian. J. 2014, 9, 3360.
      (h) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414.

    31. [31]

      (a) Adams, H.; Guio, L. V. Y.; Morris, M. J.; Spey, S. E. J. Chem. Soc., Dalton Trans. 2002, 2907.
      (b) Chamberlin, R. L. M.; Rosenfeld, D. C.; Wolczanski, P. T.; Lobkovsky, E. B. Organometallics 2002, 21, 2724.
      (c) Hayashi, N.; Ho, D. M.; Pascaljr, R. A. Tetrahedron Lett. 2000, 41, 4261.
      (d) Cairns, G. A.; Carr, N.; Green, M.; Mahon, M. F. Chem. Commun. 1996, 2431
      (e) OÏConnor, J. M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9013.
      (f) Moriarty, R. M.; Penmasta, R.; Awasthi, X. A. K.; Prakash, I. J. Org. Chem. 1988, 53, 6124.
      (g) Sawaki, Y.; Inoue, H.; Ogata, Y. Bull. Chem. Soc. Jpn. 1983, 56, 1133.
      (h) Sullivan, B. P.; Smythe, R. S.; Kober, E. M.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4701.

    32. [32]

      Dighea, S. U.; Batra, S. Adv. Synth. Catal. 2016, 358, 500.  doi: 10.1002/adsc.201500906

    33. [33]

      For selected examples, see: (a) Sato, A.; Morishita, T.; Shiraki, T.; Yoshioka, S.; Horikoshi, H.; Kuwano, H.; Hanzawa, H.; Hata, T. J. Org. Chem. 1993, 58, 7632.
      (b) Carroll, A. R.; Hyde, E.; Smith, J.; Quinn, R. J.; Guymer, G.; Forster, P. I. J. Org. Chem. 2005, 70, 1096.
      (c) O'Connor, S. E.; Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532.
      (d) Stempel, E.; Gaich, T. Acc. Chem. Res. 2016, 49, 2390.

    34. [34]

      For selected reviews and book, see: (a) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234.
      (b) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676.

    35. [35]

      (a) Chatgilialoglu, C.; Ferreri, C.; Ballestri, M.; Curran, D. P. Tetrahedron Lett. 1996, 37, 6387.
      (b) Clive, D. L. J.; Paul, C. C.; Wang, Z. J. Org. Chem. 1997, 62, 7028.
      (c) Miura, K.; Fujisawa, N.; Saito, H.; Wang, D.; Hosomi, A. Org. Lett. 2001, 3, 2591.
      (d) Usugi, S.; Yorimitsu, H.; Oshima, K. Tetrahedron Lett. 2001, 42, 4535.
      (e) Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. J. Org. Chem. 2001, 66, 7776.
      (f) Tanaka, S.; Nakamura, T.; Yorimitsu, H.; Oshima, K. Synlett 2002, 569.
      (g) Cai, Y.; Roberts, B. P. Tetrahedron Lett. 2003, 44, 4645.
      (h) Cai, Y.; Roberts, B. P.; Tocher, D. A.; Barnett, S. A. Org. Biomol. Chem. 2004, 2, 2517.
      (i) Takami, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2004, 6, 4555.
      (j) Song, H.-J.; Lim, C. J.; Kim, S. Chem. Commun. 2006, 2893.
      (k) Beckwith, A. L. J.; Schiesser, C. H. Org. Biomol. Chem. 2011, 9, 1736.
      (l) Klos, M. R.; Kazmaier, U. Eur. J. Org. Chem. 2013, 2013, 1726.

    36. [36]

      Sudo, Y.; Yamaguchi, E.; Itoh, A. Org. Lett. 2017, 19, 1610.  doi: 10.1021/acs.orglett.7b00428

    37. [37]

      (a) Cabrele, C.; Reiser, O. J. Org. Chem. 2016, 81, 10109.
      (b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.

    38. [38]

      (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
      (b) Felpin, F. X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693.
      (c) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
      (d) Ritchie, T. J.; Macdonald, S. J. F.; Young, R. J.; Pickett, S. D. Drug Discovery Today 2011, 16, 164.

    39. [39]

      Zhang, H.-W.; Muñiz, K. ACS Catal. 2017, 7, 4122.  doi: 10.1021/acscatal.7b00928

    40. [40]

      (a) Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837.
      (b) Djerassi, C. Chem. Rev. 1948, 43, 271.
      (c) Skell, P. S.; Day, J. C. Acc. Chem. Res. 1978, 11, 381.

    41. [41]

      Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. Chem. Rev. 2016, 116, 2478.  doi: 10.1021/acs.chemrev.5b00484

    42. [42]

      Breugst, M.; Detmar, E.; vonder Heiden, D. ACS Catal. 2016, 6, 3203.  doi: 10.1021/acscatal.6b00447

    43. [43]

      Tsuji, N.; Kobayashi, Y.; Takemoto, Y. Chem. Commun. 2014, 50, 13691.  doi: 10.1039/C4CC06014H

    44. [44]

      (a) Svensson, P. H.; Kloo, L. Chem. Rev. 2003, 103, 16494.
      (b) de Violet, P. F. Rev. Chem. Intermed. 1981, 4, 121.

    45. [45]

      (a) Yamada, K.; Kato, T.; Hirata, Y. J. Chem. Soc., Chem. Commun. 1969, 1479.
      (b). Tada, N.; Cui, L.; Ishigami, T.; Ban, K.; Miura, T.; Itoh, A. Green Chem. 2012, 14, 3007.
      (c) Hou, R.-S.; Wang, H.-M.; Lin, Y.-C.; Chen, L.-C. J. Chin. Chem. Soc. 2005, 52, 1029.
      (d) Hou, R.-S.; Wang, H.-M.; Lin, Y.-C.; Chen, L.-C. Heterocycles 2005, 65, 649.
      (e) Uyanik, M.; Yasui, T.; Ishihara, K. Bioorg. Med. Chem. Lett. 2009, 19, 3848.
      (f) Shah, A. A.; Khan, Z. A.; Choudhary, N.; Loholter, C.; Schafer, S.; Marie, G. P. L.; Farooq, U.; Witulski, B.; Wirth, T. Org. Lett. 2009, 11, 3578.
      (g) Farooq, U.; Schafer, S.; Shah, A. A.; Freudendahl, D. M.; Wirth, T. Synthesis 2010, 1023.
      (h) Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50, 5331.
      (i) Uyanik, M.; Ishihara, K. ChemCatChem 2012, 4, 177.

    46. [46]

      Tada, N.; Ishigami, T.; Cui, L.; Ban, K.; Miura, T.; Itoh, A. Tetrahedron Lett. 2013, 54, 256.  doi: 10.1016/j.tetlet.2012.11.014

    47. [47]

      Selvam, T. P.; Kumar, P. V. Res. Pharm. 2011, 1, 1.

    48. [48]

      (a) Gundla, R.; Kazemi, R.; Sanam, R.; Muttineni, R.; Sarma, J. A. R. P.; Dayam, R.; Neamati, N. J. Med. Chem. 2008, 51, 3367.
      (b) Mendes da Silva, J. F.; Walters, M.; Al-Damluji, S.; Ganellin, C. R. Bioorg. Med. Chem. 2008, 16, 7254.

    49. [49]

      (a) Wendlandt A. E.; Stahl, S. S. J. Am. Chem. Soc. 2014, 136, 506.
      (b) Chen, Z.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu, H. J. Org. Chem. 2013, 78, 11342.
      (c) Vlaar, T.; Cioc, R. C.; Mampuys, P.; Maes, B. U. W.; Orru, R. V. A.; Ruijter, E. Angew. Chem., Int. Ed. 2012, 51, 13058.
      (d) Rachakonda, S.; Pratap, P. S.; Rao, M. V. B. Synthesis 2012, 44, 2065.
      (e) Yan, Y.; Wang, Z. Chem. Commun. 2011, 47, 9513.
      (f) Han, B.; Wang, C.; Han, R.-F.; Yu, W.; Duan, X.-Y.; Fang, R.; Yang, X.-L. Chem. Commun. 2011, 47, 7818.
      (g) Karnakar, K.; Shankar, J.; Murthy, S. N.; Ramesh, K.; Nageswar, Y. V. D. Synlett 2011, 1089.
      (h) Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. Chem. Coommun. 2010, 46, 5244.
      (i) Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841.
      (j) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. J. Org. Chem. 2009, 74, 4934.
      (k) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. Chem. Commun. 2008, 2935.
      (l) Ferrini, S.; Ponticelli, F.; Taddei, M. Org. Lett. 2007, 9, 69.

    50. [50]

      Han, B.; Yang, X.-L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen, X.; Yu, W. J. Org. Chem. 2012, 77, 1136.  doi: 10.1021/jo2020399

    51. [51]

      Fang, J.; Zhou, J.; Fang, Z. RSC Adv. 2013, 3, 334.  doi: 10.1039/C2RA22278G

    52. [52]

      Maheswari, C. U.; Kumar, G. S.; Venkateshwar, M.; Kumar, R. A.; Kantam, M. L.; Reddy, K. R. Adv. Synth. Catal. 2010, 352, 341.  doi: 10.1002/adsc.200900715

    53. [53]

      Vanden Eynde, J. J.; Godin, J.; Mayence, A.; Maquestiau, A.; Anders, E. Synthesis 1993, 867.

    54. [54]

      Peng, Y.; Zeng, Y.; Qiu, G.; Cai, L.; Pike, V. W. J. Heterocycl. Chem. 2010, 47, 1240.  doi: 10.1002/jhet.444

    55. [55]

      Yamaguchi, T.; Sakairi, K.; Yamaguchi, E.; Tada, N.; Itoh, A. RSC Adv. 2016, 6, 56892.  doi: 10.1039/C6RA04073J

    56. [56]

      Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.  doi: 10.1021/jm501100b

    57. [57]

      (a) Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T. Tetrahedron Lett. 1968, 9, 5609.
      (b) Minisci, F.; Vismara, E.; Fontana, F. Heterocycles 1989, 28, 489.
      (c) Minisci, F.; Fontana, F.; Vismara, E. J. Heterocycl. Chem. 1990, 27, 79.

    58. [58]

    59. [59]

      Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.  doi: 10.1126/science.aav3200

    60. [60]

      Fu, Y.; Liu, L.; Yu, H.-Z.; Wang, Y.-M.; Guo, Q.-X. J. Am. Chem. Soc. 2005, 127, 7227.  doi: 10.1021/ja0421856

    61. [61]

      Noble, A.; Aggarwal, V. K. Sci. China:Chem. 2019, 62, 1083.  doi: 10.1007/s11426-019-9489-4

    62. [62]

      (a) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123.
      (b) Zhdankin, V. V. Curr. Org. Synth. 2005, 2, 121.
      (c) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
      (d) Wu, S. W.; Liu, J. L.; Liu, F. Org. Lett. 2016, 18, 1.

    63. [63]

      For selected reviews and papers: (a) Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003.
      (b) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 132, 6104.
      (c) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247.
      (d) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H. Synthesis 2015, 47, 1195.

    64. [64]

      For selected examples: (a) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
      (b) Jia, Y.-X.; Kündig, E. P. Angew. Chem., Int. Ed. 2009, 48, 1636.
      (c) Piou, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2012, 51, 11561.

    65. [65]

      For selected reviews: (a) Kolb, H. C.; Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
      (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
      (c) Muňiz, K. Angew. Chem., Int. Ed. 2009, 48, 9412.
      (d) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
      (e) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
      (f) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604.

    66. [66]

      Ji, W.-Q.; Tan, H.; Wang, M.; Li, P.-H.; Wang, L. Chem. Commun. 2016, 52, 1462.  doi: 10.1039/C5CC08253F

    67. [67]

      Seoud, O. A.; Ferreira, M.; Rodrigues, W. A.; Ruasse, M. F. J. Phys. Org. Chem. 2005, 18, 173.  doi: 10.1002/poc.864

    68. [68]

      (a) Ochiai, M.; Ito, T.; Takahashi, H.; Nakanishi, A.; Toyonari, M.; Sueda, T.; Goto, S.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 7716.
      (b) Do, H.-Q.; Kashif Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.
      (c) Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 11060.

    69. [69]

      (a) Li, H.; Li, P.; Tan, H.; Wang, L. Chem.-Eur. J. 2013, 19, 14432.
      (b) Chen, L.; Li, H.; Yu, F.; Wang, L. Chem. Commun. 2014, 50, 14866.

    70. [70]

      (a) Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 5672.
      (b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374.

    71. [71]

      (a) Murakami, A.; Gao, G.; Omura, M.; Yano, M.; Ito, C.; Furukawa, H.; Takahashi, D.; Koshimizu, K.; Ohigashi, H. Bioorg. Med. Chem. Lett. 2000, 10, 59.
      (b) Wang, C. J.; Hsieh, Y. J.; Chu, C. Y.; Lin, Y. Y.; Tseng, T. H. Cancer Lett. 2002, 183, 163.
      (c) Zhao, Y.; Zheng, Q.; Dakin, K.; Xu, K.; Martinez, M. L.; Li, W. H. J. Am. Chem. Soc. 2004, 126, 4653.
      (d) Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Curr. Med. Chem. 2005, 12, 887.
      (e) Signore, G.; Nifosi, R.; Albertazzi, L.; Storti, B.; Bizzarri, R. J. Am. Chem. Soc. 2010, 132, 1276.
      (f) Wang, C.; Wu, C.; Zhu, J.; Miller, R. H.; Wang, Y. J. Med. Chem. 2011, 54, 2331.
      (g) Sashidhara, K. V.; Kumar, A.; Chatterjee, M.; Rao, K. B.; Singh, S.; Verma, A. K.; Palit, G. Bioorg. Med. Chem. Lett. 2011, 21, 1937.
      (h) Peng, X.; Damu, G.; Zhou, C. Curr. Pharm. Des. 2013, 19, 3884.
      (i) Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Bioorg. Med. Chem. 2014, 22, 3806.

    72. [72]

      (a) Harayama, T.; Katsuno, K.; Nishiok, H.; Fujii, M.; Nishita, Y.; Ishii, H.; Kaneko, Y. Heterocycles 1994, 39, 613.
      (b) Kadnikov, D. V.; Larock, R. C. Org. Lett. 2000, 2, 3643.
      (c) Kabalka, G. W.; Dong, G.; Venkataiah, B. Tetrahedron Lett. 2004, 45, 5139.
      (d) Oyamada, J.; Kitamura, T. Tetrahedron 2006, 62, 6918.
      (e) Surya, P. R. H.; Sivakumar, S. J. Org. Chem. 2006, 71, 8715.
      (f) Zhang, L.; Meng, T.; Fan, R.; Wu, J. J. Org. Chem. 2007, 72, 7279.
      (g) Yuan, H.-J.; Wang, M.; Liu, Y.-J.; Liu, Q. Adv. Synth. Catal. 2009, 351, 112.
      (h) Yuan, H.; Wang, M.; Liu, Y.; Wang, L.; Liu, J.; Liu, Q. Chem.-Eur. J. 2010, 16, 13450.
      (i) Raju, B.-C.; Tiwari, A.-K.; Kumar, J.-K.; Ali, A.-Z.; Agawane, S.-B.; Saidachary, G.; Madhusudana, K. Bioorg. Med. Chem. 2010, 18, 358.
      (j) Fernandes, T. A.; GontijoVaz, B.; Eberlin, M. N.; Silva, A. J. M.; Costa, P. R. R. J. Org. Chem. 2010, 75, 7085.
      (k) Yan, K.; Yang, D.; Wei, W.; Wang, F.; Shuai, Y.; Li, Q.; Wang, H. J. Org. Chem. 2015, 80, 1550.

    73. [73]

      Yang, S.; Tan, H.; Ji, W.-Q.; Zhang, X.-B.; Li, P.-H.; Wang, L. Adv. Synth. Catal. 2017, 359, 1.  doi: 10.1002/adsc.201601440

    74. [74]

      Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872.  doi: 10.1002/anie.201502369

    75. [75]

      (a) Matcha, K.; Narayan, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 7985.
      (b) Do, H.-Q.; Kashif Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.
      (c) Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 11060.

    76. [76]

      (a) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
      (b) Carlo, B.; Donna, M. H.; Amos, B. S. Chem. Med. Chem. 2013, 8, 385.
      (c) Ballatore, C.; Soper, J. H.; Piscitelli, F.; James, M.; Huang, L.; Atasoylu, O.; Huryn, D. M.; Trojanowski, J. Q.; Lee, V. M.; Brunden, K. R.; Smith, A. B. J. Med. Chem. 2011, 54, 6969.
      (d) Malwal, S. R.; Sriram, D.; Yogeeswari, P.; Konkimalla, V. B.; Chakrapani, H. J. Med. Chem. 2012, 55, 553.
      (e) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
      (f) Adhikari, N.; Mukherjee, A.; Saha, A.; Jha, T. Eur. J. Med. Chem. 2017, 129, 72.

    77. [77]

      (a) Wynne, J. H.; Price, S. E.; Rorer, J. R.; Stalick, W. M. Synth. Commun. 2003, 33, 341.
      (b) Khalafi-Nezhad, A.; Parhami, A.; Zare, A.; Shirazi, A. N.; Zare, A. R. M.; Hassaninejad, A. Can. J. Chem. 2008, 86, 456.
      (c) Wu, X.-F.; Vovard-Le Bray, C.; Bechki, L.; Darcel, C. Tetrahedron 2009, 65, 7380.
      (d) Chang, J. W. W.; Ton, T. M. U.; Tania, S.; Taylor, P. C.; Chan, P. W. H. Chem. Commun. 2010, 46, 922.
      (e) Chawla, R.; Singh, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 3553.
      (f) Morales, S.; Guijarro, F. G.; Garcia Ruano, J. L.; Cid, M. B. J. Am. Chem. Soc. 2014, 136, 1082.
      (g) Reeves, J. T.; Visco, M. D.; Marsini, M. A.; Grinberg, N.; Busacca, C.A.; Mattson, A. E.; Senanayake, C. H. Org. Lett. 2015, 17, 2442.
      (h) Sharghi, H.; Hosseini-Sarvari, M.; Ebrahimpourmoghaddam, S. ARKIVOC 2007, xv, 255.

    78. [78]

      (a) Sisko, J.; Weinreb, S. M. J. Org. Chem. 1990, 55, 393.
      (b) Trost, B. M.; Marrs, C. J. Org. Chem. 1991, 56, 6468.
      (c) Huang, D.; Wang, X.; Wang, X.; Chen, W.; Wang, X.; Hu, Y. Org. Lett. 2016, 18, 604.

    79. [79]

      (a) Hopkins, M. D.; Scott, K. A.; DeMier, B. C.; Morgan, H. R.; Macgruder, J. A.; Lamar, A. A. Org. Biomol. Chem. 2017, 15, 9209.
      (b) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
      (c) Höfling, S. B.; Heinrich, M. R. Synthesis 2011, 173.
      (d) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev. 2016, 45, 2044.
      (e) Achar, T. K.; Mal, P. J. Org. Chem. 2015, 80, 666.
      (f) Jin, L. M.; Lu, H.; Cui, Y.; Lizardi, C. L.; Arzua, T. N.; Wojtas, L.; Cui, X.; Zhang, X. P. Chem. Sci. 2014, 5, 2422.
      (g) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem. 2012, 51, 3231.

    80. [80]

      Hopkins, M. D.; Brandeburg, Z. C.; Hanson A. J.; Lamar, A. A. Molecules 2018, 23, 1838.  doi: 10.3390/molecules23081838

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    4. [4]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    7. [7]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    8. [8]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    17. [17]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    20. [20]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

Metrics
  • PDF Downloads(248)
  • Abstract views(6190)
  • HTML views(1889)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return