Citation: Lin Cong, Gao Zhenbo, Teng Qiuxun, Xue Bowen, Li Xiaohua, Gao Fei, Shen Liang. Synthesis of Vinyl-Substituted Dihydroisoquinolone via Ru(Ⅱ)-Catalyzed C—H Functionalization/Annulation of Imidates[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2863-2870. doi: 10.6023/cjoc202004048 shu

Synthesis of Vinyl-Substituted Dihydroisoquinolone via Ru(Ⅱ)-Catalyzed C—H Functionalization/Annulation of Imidates

  • Corresponding author: Lin Cong, conglin0127@jxstnu.com.cn Shen Liang, liangshen@jxstnu.com.cn
  • Received Date: 29 April 2020
    Revised Date: 4 June 2020
    Available Online: 19 June 2020

    Fund Project: the Natural Science Foundation of Jiangxi Province 20202BABL213005the National Natural Science Foundation of China 21704036Project supported by the National Natural Science Foundation of China (Nos. 51963010, 21704036) and the Natural Science Foundation of Jiangxi Province (No. 20202BABL213005)the National Natural Science Foundation of China 51963010

Figures(5)

  • An efficient and powerful approach for the construction of vinyl-substituted dihydroisoquinolone derivatives through ruthenium-catalyzed tandem C—H functionalization/annulation of imidates has been demonstrated. Various substituted functional groups of imidates could be well tolerated in this new transformation, delivering the corresponding products in moderate to good yields. This method represents the first successful example of Ru(Ⅱ)-catalyzed C—H functionalization/an-nulation of imidates with 4-vinyl-1, 3-dioxolan-2-one to the efficient synthesis of 3-vinyl-3, 4-dihydroisoquinolin-1(2H)-ones.
  • 加载中
    1. [1]

      (a) Danishefsky, S.; Lee, J. Y. J. Am. Chem. Soc. 1989, 111, 4829.
      (b) Baxendale, I. R.; Ley, S. V.; Piutti, C. Angew. Chem., Int. Ed. 2002, 41, 219.
      (c) Moser, W. H.; Zhang, J.; Lecher, C. S.; Frazier, T. L.; Pink, M. Org. Lett. 2002, 4, 1981.

    2. [2]

      (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
      (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
      (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
      (d) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
      (e) Liu, C.; Zhang, H.; Sui, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
      (f) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677.
      (g) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.
      (h) Castro, L. C. M.; Chatani, N. Chem. Lett. 2015, 44, 410.
      (i) Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003.
      (j) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.
      (k) Kim, D.-S.; Park, W.-J.; Jun, C.-H. Chem. Rev. 2017, 117, 8977.
      (l) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.
      (m) Santhoshkumar, R.; Cheng, C.-H. Chem.-Eur. J. 2019, 25, 9366.
      (n) Rej, S.; Chatani, N. Angew. Chem., Int. Ed. 2019, 58, 8304.
      (o) Luo, F. Chin. J. Org. Chem. 2019, 39, 3084(in Chinese). (罗飞华, 有机化学, 2019, 39, 3084).
      (p) Wang, S.; Yan, F.; Wang, L.; Zhu, L. Chin. J. Org. Chem. 2018, 38, 291(in Chinese). (汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.)
      (q) Liao, G.; Wu, Y.-J.; Shi, B.-F. Acta Chim. Sinica 2020, 78, 289(in Chinese). (廖港, 吴勇杰, 史炳锋, 化学学报, 2020, 78, 289.)
      (r) Yuan, Y.; Liang, Y.; Shi, S.; Liang, Y.-F.; Jiao, N. Chin. J. Chem. 2020, 38, 1245.
      (s) Li, X.; Liang, G.; Shi, Z.-J. Chin. J. Chem. 2020, 38, 929.

    3. [3]

      For reviews, see: (a) Wang, F.; Yu, S.; Li, X. Chem. Soc. Rev. 2016, 45, 6462.
      (b) Shah, T. A.; De, P. B.; Pradhan, S.; Banerjee, S.; Punniyamurthy, T. Chem.-Asian J. 2019, 14, 4520.

    4. [4]

      (a) Wang, H.; Lorion, M. M.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 6339.
      (b) Lu, Q.; Klauck, F. J. R.; Glorius, F. Chem. Sci. 2017, 8, 3379.

    5. [5]

      Zhang, S.-S.; Wu, J.-Q.; Liu, X.; Wang, H. ACS Catal. 2015, 5, 210.  doi: 10.1021/cs501601c

    6. [6]

      For selected examples, see: (a) Yu, D.-G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802.
      (b) Wang, X.; Lerchen, A.; Glorius, F. Org. Lett. 2016, 18, 2090.
      (c) Li, L.; Wang, H.; Yu, S.; Yang, X.; Li, X. Org. Lett. 2016, 18, 3662.
      (d) Yang, X.; Jin, X.; Wang, C. Adv. Synth. Catal. 2016, 358, 2436.
      (e) Gong, S.; Xi, W.; Ding, Z.; Sun, H. J. Org. Chem. 2017, 82, 7643.
      (f) Wu, X.; Xiong, H.; Sun, S.; Cheng, J. Org. Lett. 2018, 20, 1396.

    7. [7]

      Wang, H.; Lorion, M. M.; Ackermann, L. ACS Catal. 2017, 7, 3430.  doi: 10.1021/acscatal.7b00756

    8. [8]

      (a) Lin, C.; Shen, L. ChemCatChem 2019, 11, 961.
      (b) Lin, C.; Gao, F.; Shen, L. Adv. Synth. Catal. 2019, 361, 391.
      (c) Lin, C.; Shen, L. RSC Adv. 2019, 9, 30650.
      (d) Lin, J.; Guo, Z.; Lin, C.; Gao, F.; Shen, L. Chemistryselect 2020, 5, 1925.
      (e) Lin, C.; Xu, Y.; Teng, Q.; Lin, J.; Gao, F.; Shen, L. Synlett 2020, 52, 889.

    9. [9]

      For selected examples of Ru(II)-catalyzed C-H activation, see: (a) Zheng, Q.-Z.; Liang, Y.-F.; Qin, C.; Jiao, N. Chem. Commun. 2013, 49, 5654.
      (b) Kim, J.; Chang, S. Chem.-Eur. J. 2013, 19, 732.
      (c) Mishra, A.; Vats, T. K.; Deb, I. J. Org. Chem. 2016, 81, 6525.
      (d) Okada, T.; Nobushige, K.; Satoh, T.; Miura, M. Org. Lett. 2016, 18, 1150.
      (e) Manikandana, R.; Jeganmohan, M. Chem. Commun. 2017, 53, 8931.
      (f) More, N. Y.; Padala, K.; Jeganmohan, M. J. Org. Chem. 2017, 82, 12691.
      (g) Kong, L.; Han, X.; Li, X. Chem. Commun. 2019, 55, 7339.
      (h) Xu, W.; Wang, N.; Zhang, M.; Shi, D. Chin. J. Org. Chem. 2019, 39, 173(in Chinese). (徐文韬, 王宁, 张梦烨, 史达清, 有机化学, 2019, 39, 173.)

    10. [10]

      Yadav, V. K.; Babu, K. G. Eur. J. Org. Chem. 2005, 2005, 452.  doi: 10.1002/ejoc.200400591

  • 加载中
    1. [1]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    2. [2]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    3. [3]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    4. [4]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    5. [5]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    6. [6]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    7. [7]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    8. [8]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    9. [9]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    10. [10]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    11. [11]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    12. [12]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    13. [13]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Yu XiongLi-Jun HuJian-Guo SongDi ZhangYi-Shuang PengXiao-Jun HuangJian HongBin ZhuWen-Cai YeYing Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149

    19. [19]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    20. [20]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

Metrics
  • PDF Downloads(3)
  • Abstract views(736)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return