Citation: Zhou Wenjun, Jiang Yuanxu, Chen Liang, Liu Kaixing, Yu Dagang. Visible-Light Photoredox and Palladium Dual Catalysis in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3697-3713. doi: 10.6023/cjoc202004045 shu

Visible-Light Photoredox and Palladium Dual Catalysis in Organic Synthesis

  • Corresponding author: Zhou Wenjun, wjzhou@njtc.edu.cn Yu Dagang, 
  • Received Date: 28 April 2020
    Revised Date: 21 May 2020
    Available Online: 27 May 2020

    Fund Project: the National Natural Science Foundation of China 21801176the Sichuan Science and Technology Program 2019YJ0379the National Basic Research Program of China (973 Program) 2015CB856600the National Natural Science Foundation of China 21772129Project supported by the National Natural Science Foundation of China (Nos. 21801176, 21772129), the National Basic Research Program of China (973 Program) (No. 2015CB856600), the Sichuan Science and Technology Program (No. 2019YJ0379) and the Open Project of Neijiang Normal University (No. KF10076)the Open Project of Neijiang Normal University KF10076

Figures(29)

  • Palladium-catalyzed organic transformations is an important branch of organometallic chemistry. Because it can efficiently construct carbon-carbon bonds and carbon-heteroatom bonds, palladium catalysis has been widely used in synthetic chemistry, material science and pharmaceutical industry. However, some of these reactions suffer from harsh reaction conditions, including high temperature and strong base. On the other hand, the visible-light photoredox catalysis employs the visible light as the energy source to generate highly reactive intermediates and realize many novel transformations, which are rare under the normal thermal reaction conditions, under mild reaction conditions. However, there are also limitations in reaction types and substrate scope in this field. In order to solve such problems in these two fields, organic chemists have merged the visible-light photoredox catalysis and palladium catalysis, realizing a series of novel organic transformations through the electron transfer or energy transfer between photosensitizer and organic palladium complex under mild conditions with high efficiency and selectivity, which has broad substrate scope and great application potential. In these transformations, visible-light photoredox catalysis and palladium catalysis both play their respective roles and cooperate well. The application of visible light photoredox and palladium dual catalysis in organic synthesis is summarized and the future research directions in this field are analyzed, which might help the further development of this field.
  • 加载中
    1. [1]

      For select reviews: (a) Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027.
      (b) Knappke, C. E. I.; Jacobi von Wangelin, A. Chem. Soc. Rev. 2011, 40, 4948.
      (c) Enthaler, S.; Company, A. Chem. Soc. Rev. 2011, 40, 4912.
      (d) Kambe, N.; Iwasaki, T.; Terao, J. Chem. Soc. Rev. 2011, 40, 4937.
      (e) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.

    2. [2]

    3. [3]

    4. [4]

      For select reviews: (a) Paria, S.; Reiser, O. ChemCatChem 2014, 6, 2477.
      (b) Hernandez-Perez, A. C.; Collins, S. K. Acc. Chem. Res. 2016, 49, 1557.
      (c) Reiser, O. Acc. Chem. Res. 2016, 49, 1990.
      (d) Parasram, M.; Gevorgyan, V. Chem. Soc. Rev. 2017, 46, 6227.
      (e) Zhou, W.-J.; Cao, G.-M.; Zhang, Z.-P.; Yu, D.-G. Chem. Lett. 2019, 48, 181.
      (f) Chuentragool, P.; Kurandina, D.; Gevorgyan, V. Angew. Chem., Int. Ed. 2019, 58, 11586.
      For select examples for visible light-excited Pd-catalysts, see: (g) Kurandina, D.; Parasram, M.; Gevorgyan, V. Angew. Chem., Int. Ed. 2017, 56, 14212.
      (h) Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683.
      (i) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 18307.
      (j) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049.
      (k) Zhou, Z.-Z.; Zhao, J.-H.; Gou, X.-Y.; Chen, X.-M.; Liang, Y.-M. Org. Chem. Front. 2019, 6, 1649.
      (l) Sun, S.; Zhou, C.; Yu, J.-T.; Cheng, J. Org. Lett. 2019, 21, 6579.
      (m) Kancherla, R.; Muralirajan, K.; Maity, B.; Zhu, C.; Krach, P. E.; Cavallo, L.; Rueping, M. Angew. Chem., Int. Ed. 2019, 58, 3412.
      (n) Huang, H.-M.; Koy, M.; Serrano, E.; Pflüger, P. M.; Schwarz, J. L.; Glorius, F. Nat. Catal. 2020, 3, 393.
      (o) Torres, G. M.; Liu, L.; Arndtsen, B. A. Science 2020, 368, 318.

    5. [5]

      For select reviews: (a) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874.
      (b) Gui, Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Org. Chem. Front. 2016, 3, 522.
      (c) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
      (d) Levin, M. D.; Kim, S.; Toste, F. D. ACS Cent. Sci. 2016, 2, 293.
      (e) Goddard, J.-P.; Ollivier, C.; Fensterbank, L. Acc. Chem. Res. 2016, 49, 1924.
      (f) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
      (g) Tóth, B. L.; Tischler, O.; Novák, Z. Tetrahedron Lett. 2016, 57, 4505.
      (h) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.
      (i) Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem. Res. 2016, 49, 2261.
      (j) Fabry, D. C.; Rueping, M. Acc. Chem. Res. 2016, 49, 1969.
      (k) Lang, X.; Zhao, J.; Chen, X. Chem. Soc. Rev. 2016, 45, 3026.
      (l) Zhou, W.-J.; Zhang, Y.-H.; Gui, Y.-Y.; Sun, L.; Yu, D.-G. Synthesis 2018, 50, 3359.

    6. [6]

      Osawa, M.; Nagai, H.; Akita, M. Dalton. Trans. 2007, 2, 827.

    7. [7]

      (a) Kalyani, D.; Mcmurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566.
      (b) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330.

    8. [8]

      Neufeldt, S. R.; Sanford, M. S. Adv. Synth. Catal. 2012, 354, 3517.  doi: 10.1002/adsc.201200738

    9. [9]

      Liang, L.; Xie, M.-S.; Wang, H.-X.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M. J. Org. Chem. 2017, 82, 5966.  doi: 10.1021/acs.joc.7b00659

    10. [10]

      Khan, R.; Boonseng, S.; Kemmitt, P. D.; Felix, R.; Coles, J.; Tizzard, G. J.; Williams, G.; Simmonds, O.; Harvey, J.-L.; Atack, J.; Cox, H.; Spencer, J. Adv. Synth. Catal. 2017, 359, 3261.  doi: 10.1002/adsc.201700626

    11. [11]

      Jiang, J.; Zhang, W.-M.; Dai, J.-J.; Xu, J.; Xu, H.-J. J. Org. Chem. 2017, 82, 3622.  doi: 10.1021/acs.joc.7b00140

    12. [12]

      Sahoo, M. K.; Midya, S. P.; Landge, G.; Balaraman, E. Green Chem. 2017, 19, 2111.  doi: 10.1039/C6GC03438A

    13. [13]

      Zhao, J.; Li, H.; Li, P.; Wang, L. J. Org. Chem. 2019, 84, 9007.  doi: 10.1021/acs.joc.9b00893

    14. [14]

      Zhang, H.; Huang, X. Adv. Synth. Catal. 2016, 358, 3736.  doi: 10.1002/adsc.201600704

    15. [15]

      Czyz, M. L.; Lupton, D. W.; Polyzos, A. Chem.-Eur. J. 2017, 23, 14450.  doi: 10.1002/chem.201704045

    16. [16]

      Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.; Alper, H. Angew. Chem., Int. Ed. 2015, 54, 1625.  doi: 10.1002/anie.201409999

    17. [17]

      Lan g, S. B.; Nele, K. M. O.; Tunge, J. A. J. Am. Chem. Soc. 2014, 136, 13606.  doi: 10.1021/ja508317j

    18. [18]

      Lang, S. B.; Nele, K. M. O.; Douglas, J. T.; Tunge, J. A. Chem. Eur. J. 2015, 21, 18589.  doi: 10.1002/chem.201503644

    19. [19]

      Zhang, H.-H.; Zhao, J.-J.; Yu, S. J. Am. Chem. Soc. 2018, 140, 16914.  doi: 10.1021/jacs.8b10766

    20. [20]

      Zhang, H.-H.; Zhao, J.-J.; Yu, S. ACS Catal. 2020, 10, 4710.  doi: 10.1021/acscatal.0c00871

    21. [21]

      Zheng, C.; Cheng, W.; Li, H.; Na, R.; Shang, R. Org. Lett. 2018, 20, 2559.  doi: 10.1021/acs.orglett.8b00712

    22. [22]

      Shen, X.; Qian, L.; Yu, S. Sci. China: Chem. 2020, 63, 687.  doi: 10.1007/s11426-019-9732-5

    23. [23]

      Liu, K.; Zou, M.; Lei, A. J. Org. Chem. 2016, 81, 7088.  doi: 10.1021/acs.joc.6b00965

    24. [24]

      Zhou, C.; Li, P.; Zhu, X.; Wang, L. Org. Lett. 2015, 17, 6198.  doi: 10.1021/acs.orglett.5b03192

    25. [25]

      Xu, N.; Li, P.; Xie, Z.; Wang, L. Chem.-Eur. J. 2016, 22, 2236.  doi: 10.1002/chem.201504530

    26. [26]

      Sharma, U. K.; Gemoets, H. P. L.; Schröder, F.; Noël, T.; Van der Eycken, E. V. ACS Catal. 2017, 7, 3818.  doi: 10.1021/acscatal.7b00840

    27. [27]

      Manna, M. K.; Bairy, G.; Jana, R. Org. Biomol. Chem. 2017, 15, 5899.  doi: 10.1039/C7OB01418J

    28. [28]

      Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem.-Eur. J. 2015, 21, 13191.  doi: 10.1002/chem.201502286

    29. [29]

      Zhao, B.; Shang, R.; Cheng, W.; Fu, Y. Org. Chem. Front. 2018, 5, 1782.  doi: 10.1039/C8QO00253C

    30. [30]

      Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 9467.  doi: 10.1021/jacs.7b04838

    31. [31]

      Shimomaki, K.; Nakajima, T.; Caner, J.; Toriumi, N.; Iwasawa, N. Org. Lett. 2019, 21, 4486.  doi: 10.1021/acs.orglett.9b01340

    32. [32]

      Bhunia, S. K.; Das, P.; Nandi, S.; Jana, R. Org. Lett. 2019, 21, 4632.  doi: 10.1021/acs.orglett.9b01532

    33. [33]

      Zhu, C.; Zhang, Y.; Liu, Z.; Zhou, L.; Liu, H.; Feng, C. Chem. Sci. 2019, 10, 6721.  doi: 10.1039/C9SC01336A

    34. [34]

      Choi, S.; Chatterjee, T.; Choi, W. J.; You, Y.; Cho, E. J. ACS Catal. 2015, 5, 4796.  doi: 10.1021/acscatal.5b00817

    35. [35]

      Sheri, S.; Paul, A.; Bera, M.; Venkatesh, Y.; Singh, N. D. P. Org. Lett. 2018, 20, 5533.  doi: 10.1021/acs.orglett.8b01973

    36. [36]

      Zoller, J.; Fabry, D. C.; Ronge, M. A.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 13264.  doi: 10.1002/anie.201405478

    37. [37]

      Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204.  doi: 10.1021/jacs.7b00253

    38. [38]

      Under the revision of the manuscript, an elegant dehydrative allylation was reported, see:
      Masuda, Y.; Ito, M.; Mutakami, M. Org. Lett. 2020, 22, 4467.

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    7. [7]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    8. [8]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    11. [11]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    20. [20]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

Metrics
  • PDF Downloads(155)
  • Abstract views(5278)
  • HTML views(1171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return