Citation: Zhang Yi, Liu Yu. Supramolecular Assemblies of Multi-Charged Cyclodextrins[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3802-3811. doi: 10.6023/cjoc202004040 shu

Supramolecular Assemblies of Multi-Charged Cyclodextrins

  • Corresponding author: Liu Yu, yuliu@nankai.edu.cn
  • Received Date: 25 April 2020
    Revised Date: 29 April 2020
    Available Online: 11 May 2020

    Fund Project: the National Natural Science Foundation of China 21861132001Project supported by the National Natural Science Foundation of China (Nos. 21772099, 21861132001)the National Natural Science Foundation of China 21772099

Figures(13)

  • As a class of macrocyclic host with excellent water solubility, low biotoxicity and high charge density, multi-charged cyclodextrins have been extensively studied because they can interact with organic/inorganic/biological molecules through multiple synergistic forces such as the hydrophobic cavities and electrostatic interactions to construct the smart supramolecular assemblies with stable topology, functional diversity and stimulus responsiveness. The latest research progress of pH-, photo-, enzyme-, redox-, magnetic-and multi-stimulus responsive smart supramolecular assemblies, which are constructed by typical positively/negatively charged and amphiphilic multi-charged cyclodextrins including their application in the fields of drug delivery, controlled release and sensory detection is introduced, and the challenges and future developments of multi-charged cyclodextrin smart supramolecular assemblies are discussed.
  • 加载中
    1. [1]

    2. [2]

      Eliseev, A. V.; Schneider, H.-J. J. Am. Chem. Soc. 1994, 116, 6081.  doi: 10.1021/ja00093a004

    3. [3]

    4. [4]

      (a) Eliseev, A. V.; Schneider, H.-J. Angew. Chem., Int. Ed. 1993, 32, 1331.
      (b) Steffen, A.; Thiele, C.; Tietze, S.; Strassnig, C.; Kämper, A.; Lengauer, T.; Wenz, G.; Apostolakis, J. Chem.-Eur. J. 2007, 13, 6801.

    5. [5]

      (a) Zhang, Y. M.; Liu, Y. H.; Liu, Y. Adv. Mater. 2020, 32, e1806158.
      (b) Liao, R.; Lv, P.; Wang, Q.; Zheng, J.; Feng, B.; Yang, B. Biomater. Sci. 2017, 5, 1736.
      (c) Yao, X.; Mu, J.; Zeng, L.; Lin, J.; Nie, Z.; Jiang, X.; Huang, P. Mater. Horiz. 2019, 6, 846.

    6. [6]

      (a) Bom, A.; Bradley, M.; Cameron, K.; Clark, J. K.; Van Egmond, J.; Feilden, H.; Maclean, E. J.; Muir, A. W.; Palin, R.; Rees, D. C.; Zhang, M.-Q. Angew. Chem., Int. Ed. 2002, 41, 265.
      (b) Adam, J. M.; Bennett, D. J.; Bom, A.; Clark, J. K.; Feilden, H.; Hutchinson, E. J.; Palin, R.; Prosser, A.; Rees, D. C.; Rosair, G. M.; Stevenson, D.; Tarver, G. J.; Zhang, M.-Q. J. Med. Chem. 2002, 45, 1806.

    7. [7]

      Jones, S. T.; Cagno, V.; Janeček, M.; Ortiz, D.; Gasilova, N.; Piret, J.; Gasbarri, M.; Constant, D. A.; Han, Y.; Vuković, L.; Král, P.; Kaiser, L.; Huang, S.; Constant, S.; Kirkegaard, K.; Boivin, G.; Stellacci, F.; Tapparel, C. Sci. Adv. 2020, 6, eaax9318.  doi: 10.1126/sciadv.aax9318

    8. [8]

      Sun, H.-L.; Zhang, Y.-M.; Chen, Y.; Liu, Y. Sci. Rep. 2016, 6, 27.  doi: 10.1038/s41598-016-0026-z

    9. [9]

      Li, J. J.; Chen, Y.; Yu, J.; Cheng, N.; Liu, Y. Adv. Mater. 2017, 29, 1701905.  doi: 10.1002/adma.201701905

    10. [10]

      (a) Shi, R.-J.; Chen, Y.; Hou, X.-F.; Liu, Y. RSC Adv. 2016, 6, 15175.
      (b) Zhao, D.; Chen, Y.; Liu, Y. Chin. Chem. Lett. 2015, 26, 829.

    11. [11]

      Díaz-Moscoso, A.; Balbuena, P.; Gómez-García, M.; Ortiz Mellet, C.; Benito, J. M.; Le Gourriérec, L.; Di Giorgio, C.; Vierling, P.; Mazzaglia, A.; Micali, N.; Defaye, J.; García Fernández, J. M. Chem. Commun. 2008, 2001.

    12. [12]

      Zhao, F.; Yin, H.; Zhang, Z.; Li, J. Biomacromolecules 2013, 14, 476.  doi: 10.1021/bm301718f

    13. [13]

      Wang, J.; Chen, Y.; Cheng, N.; Feng, L.; Gu, B.-H.; Liu, Y. ACS Appl. Bio Mater. 2019, 2, 5898.  doi: 10.1021/acsabm.9b00845

    14. [14]

      (a) Lu, Y.; De Vries, W. C.; Overeem, N. J.; Duan, X.; Zhang, H.; Zhang, H.; Pang, W.; Ravoo, B. J.; Huskens, J. Angew. Chem., Int. Ed. 2019, 58, 159.
      (b) Schibilla, F.; Holthenrich, A.; Song, B.; Linard Matos, A. L.; Grill, D.; Rota Martir, D.; Gerke, V.; Zysman-Colman, E.; Ravoo, B. J. Chem. Sci. 2018, 9, 7822.
      (c) Himmelein, S.; Lewe, V.; Stuart, M. C. A.; Ravoo, B. J. Chem. Sci. 2014, 5, 1054.

    15. [15]

      Ravoo, B. J.; Darcy, R. Angew. Chem., Int. Ed. 2000, 39, 4324.  doi: 10.1002/1521-3773(20001201)39:23<4324::AID-ANIE4324>3.0.CO;2-O

    16. [16]

      (a) Mohan Nalluri, S. K.; Bultema, J. B.; Boekema, E. J.; Ravoo, B. J. Chem. Sci. 2011, 2, 2383.
      (b) Samanta, A.; Ravoo, B. J. Chem.-Eur. J. 2014, 20, 4966.
      (c) Samanta, A.; Stuart, M. C. A.; Ravoo, B. J. J. Am. Chem. Soc. 2012, 134, 19909.
      (d) Nalluri, S. K. M.; Bultema, J. B.; Boekema, E. J.; Ravoo, B. J. Chem.-Eur. J. 2011, 17, 10297.
      (e) Moratz, J.; Stricker, L.; Engel, S.; Ravoo, B. J. Macromol. Rapid Commun. 2018, 39, 1700256.

    17. [17]

      Sukegawa, T.; Furuike, T.; Niikura, K.; Yamagishi, A.; Monde, K.; Nishimura, S.-I. Chem. Commun. 2002, 430.

    18. [18]

      Donohue, R.; Mazzaglia, A.; Ravoo, B. J.; Darcy, R. Chem. Commun. 2002, 2864.

    19. [19]

      (a) O'mahony, A. M.; Doyle, D.; Darcy, R.; Cryan, J. F.; O'driscoll, C. M. Eur. J. Pharm. Sci. 2012, 47, 896.
      (b) Méndez-Ardoy, A.; Guilloteau, N.; Di Giorgio, C.; Vierling, P.; Santoyo-González, F.; Ortiz Mellet, C.; García Fernández, J. M. J. Org. Chem. 2011, 76, 5882.

    20. [20]

      Li, P. Y.; Chen, Y.; Chen, C. H.; Liu, Y. Chem. Commun. 2019, 55, 11790.  doi: 10.1039/C9CC06545H

    21. [21]

      (a) Zan, M.; Li, J.; Luo, S.; Ge, Z. Chem. Commun. 2014, 50, 7824.
      (b) Zhao, D.; Yi, X.; Xu, J.; Yuan, G.; Zhuo, R.; Li, F. J. Mater. Chem. B 2017, 5, 2823.
      (c) Durmaz, Y. Y.; Lin, Y.-L.; Elsayed, M. E. H. Adv. Funct. Mater. 2013, 23, 3885.

    22. [22]

      Cheng, J. G.; Yu, H. J.; Chen, Y.; Liu, Y. Bioorg. Med. Chem. 2018, 26, 2287.  doi: 10.1016/j.bmc.2018.03.013

    23. [23]

      Cheng, J.-G.; Zhang, Y.-M.; Liu, Y. ChemNanoMat 2018, 4, 758.  doi: 10.1002/cnma.201800098

    24. [24]

      Tardy, B. L.; Tan, S.; Dam, H. H.; Ejima, H.; Blencowe, A.; Qiao, G. G.; Caruso, F. Nanoscale 2016, 8, 15589.  doi: 10.1039/C6NR04841B

    25. [25]

      Liang, L.; Chen, Y.; Chen, X.-M.; Zhang, Y.; Liu, Y. Chin. Chem. Lett. 2018, 29, 989.  doi: 10.1016/j.cclet.2017.12.022

    26. [26]

      Chen, X. M.; Chen, Y.; Hou, X. F.; Wu, X.; Gu, B. H.; Liu, Y. ACS Appl. Mater. Interfaces 2018, 10, 24987.  doi: 10.1021/acsami.8b08651

    27. [27]

      (a) Gayam, S. R.; Venkatesan, P.; Sung, Y.-M.; Sung, S.-Y.; Hu, S.-H.; Hsu, H.-Y.; Wu, S.-P. Nanoscale 2016, 8, 12307.
      (b) Lee, J.; Oh, E.-T.; Yoon, H.; Woo Kim, C.; Han, Y.; Song, J.; Jang, H.; Joo Park, H.; Kim, C. Nanoscale 2017, 9, 6901.
      (c) Cheng, Y.-J.; Luo, G.-F.; Zhu, J.-Y.; Xu, X.-D.; Zeng, X.; Cheng, D.-B.; Li, Y.-M.; Wu, Y.; Zhang, X.-Z.; Zhuo, R.-X.; He, F. ACS Appl. Mater. Interfaces 2015, 7, 9078.

    28. [28]

      Hu, P.; Chen, Y.; Li, J. J.; Liu, Y. Chem.-Asian J. 2016, 11, 505.  doi: 10.1002/asia.201501029

    29. [29]

      Hou, X.-F.; Chen, Y.; Liu, Y. Soft Matter 2015, 11, 2488.  doi: 10.1039/C4SM02896A

    30. [30]

      Han, X.; Chen, Y.; Sun, H.-L.; Liu, Y. Asian J. Org. Chem. 2018, 7, 870.  doi: 10.1002/ajoc.201800076

    31. [31]

      Guan, X.; Chen, Y.; Wu, X.; Li, P.; Liu, Y. Chem. Commun. 2019, 55, 953.  doi: 10.1039/C8CC09047E

    32. [32]

      (a) Zhao, Q.; Lian, Z.; Gao, X.; Yan, Y.; Huang, J. Langmuir 2016, 32, 11973.
      (b) Mandl, G. A.; Rojas-Gutierrez, P. A.; Capobianco, J. A. Chem. Commun. 2018, 54, 5847.
      (c) Stricker, L.; Fritz, E.-C.; Peterlechner, M.; Doltsinis, N. L.; Ravoo, B. J. J. Am. Chem. Soc. 2016, 138, 4547.

    33. [33]

      Zhao, X.; Chen, Y.; Guan, X. R.; Li, P. Y.; Zhou, W. L.; Liu, Y. ChemistrySelect 2019, 4, 13241.  doi: 10.1002/slct.201903889

    34. [34]

      Li, Z.-Y.; Chen, Y.; Wu, H.; Liu, Y. ChemistrySelect 2018, 3, 3203.  doi: 10.1002/slct.201703091

    35. [35]

      Liu, Z.; Qiao, J.; Tian, Y.; Wu, M.; Niu, Z.; Huang, Y. Langmuir 2014, 30, 8938.  doi: 10.1021/la501936a

    36. [36]

      Liu, J.; Xu, L.; Jin, Y.; Qi, C.; Li, Q.; Zhang, Y.; Jiang, X.; Wang, G.; Wang, Z.; Wang, L. ACS Appl. Mater. Interfaces 2016, 8, 14200.  doi: 10.1021/acsami.6b04462

    37. [37]

      Chen, X.; Qiu, Y. K.; Owh, C.; Loh, X. J.; Wu, Y. L. Nanoscale 2016, 8, 18876.  doi: 10.1039/C6NR08055C

    38. [38]

      Wen, Y.; Zhang, Z.; Li, J. Adv. Funct. Mater. 2014, 24, 3874.  doi: 10.1002/adfm.201303687

    39. [39]

      (a) Yang, C.; Wang, X.; Li, H.; Goh, S. H.; Li, J. Biomacromolecules 2007, 8, 3365.
      (b) Yamashita, A.; Kanda, D.; Katoono, R.; Yui, N.; Ooya, T.; Maruyama, A.; Akita, H.; Kogure, K.; Harashima, H. J. Control. Release 2008, 131, 137.

    40. [40]

      Ooya, T.; Choi, H. S.; Yamashita, A.; Yui, N.; Sugaya, Y.; Kano, A.; Maruyama, A.; Akita, H.; Ito, R.; Kogure, K.; Harashima, H. J. Am. Chem. Soc. 2006, 128, 3852.  doi: 10.1021/ja055868+

    41. [41]

      Tamura, A.; Yui, N. Biomaterials 2013, 34, 2480.  doi: 10.1016/j.biomaterials.2012.12.006

    42. [42]

      Schroeder, T. B. H.; Houghtaling, J.; Wilts, B. D.; Mayer, M. Adv. Mater. 2018, 30, 1705322.  doi: 10.1002/adma.201705322

    43. [43]

      (a) Badruddoza, A. Z. M.; Bhattarai, B.; Suri, R. P. S. ACS Sustainable Chem. Eng. 2017, 5, 9223.
      (b) Lu, A.-H.; Salabas, E. L.; Schüth, F. Angew. Chem., Int. Ed. 2007, 46, 1222.

    44. [44]

      Samanta, A.; Ravoo, B. J. Angew. Chem., Int. Ed. 2014, 53, 12946.  doi: 10.1002/anie.201405849

    45. [45]

      Awasthi, A. A.; Singh, P. K. J. Phys. Chem. B 2017, 121, 6208.  doi: 10.1021/acs.jpcb.7b03592

    46. [46]

      Singh, G.; Singh, P. K. Langmuir 2019, 35, 14628.  doi: 10.1021/acs.langmuir.9b03083

    47. [47]

      Hu, P.; Chen, Y.; Liu, Y. Chem. Commun. 2015, 51, 10839.  doi: 10.1039/C5CC03248B

  • 加载中
    1. [1]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    4. [4]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    5. [5]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    6. [6]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    7. [7]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    10. [10]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    11. [11]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    12. [12]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    13. [13]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    14. [14]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    18. [18]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    19. [19]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(76)
  • Abstract views(5282)
  • HTML views(1217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return