Citation: Jin Xiaodong, Bi Tianbo, Xin Ran, Wu Guoping, Xu Tongxiang, Ma Rongliang. Advances in the Application of Organic Materials for the Development of Latent Fingerprints[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4184-4202. doi: 10.6023/cjoc202004036 shu

Advances in the Application of Organic Materials for the Development of Latent Fingerprints

  • Corresponding author: Jin Xiaodong, jinxiaodong@jspi.edu.cn Xu Tongxiang, xutongxiang@jspi.edu.cn Ma Rongliang, marl2013@163.com
  • Received Date: 24 April 2020
    Revised Date: 9 June 2020
    Available Online: 24 June 2020

    Fund Project: the National Key R&D Program of China 2018YFC0807205the Natural Science Foundation of Jiangsu Province BK20191416the High-level Introduction of Talent Scientific Research Start-up Fund of Jiangsu Police Institute JSPI17GKZL402Project supported by the Qing Lan Project of the Jiangsu Higher Education Institutions of China, the National Key R&D Program of China (No. 2018YFC0807205), the Natural Science Foundation of Jiangsu Province (No. BK20191416), the Basic Research Fund Scheme to Strengthen Policing, Ministry of Public Security of China (No. 2019GABJC19), the High-level Introduction of Talent Scientific Research Start-up Fund (No. JSPI17GKZL402) of Jiangsu Police Institutethe Basic Research Fund Scheme to Strengthen Policing, Ministry of Public Security of China 2019GABJC19

Figures(16)

  • Fingerprint can directly identify the person, and it is one of the most important physical evidence in the criminal scene. Fingerprint has always been considered as the "head of physical evidence" and plays an important role in the investigation and court proceedings. However, the fingerprint on the relevant object can not be directly observed by human eyes in actual cases, so it is also called "latent fingerprint". Although the latent fingerprint development technology has made great progress, it still faces many difficulties in the aspects of nondestructive, sensitive and efficient. And, it will bring serious difficulties to the subsequent fingerprint identification work for the criminal technicians. Therefore, it is of great significance to develop highly selective, sensitive and convenient latent fingerprint developing materials or techniques. In view of this, on the basis of the research achievements at home and abroad, the application of traditional organic materials widely used in latent fingerprint development and the new fluorescent organic materials is briefly reviewed, such as aggregation induced emission materials, conjugated polymer materials and other organic fluorescent materials, in latent fingerprint development in recent ten years. The design concept of related organic materials and the mechanism of developing latent fingerprints are summarized. Finally, the existing problems are discussed, and the future development trend of organic materials in developing latent fingerprints is prospected.
  • 加载中
    1. [1]

      Cadd, S.; Islam, M.; Manson, P.; Bleay, S. Sci. Justice 2015, 55, 219.  doi: 10.1016/j.scijus.2015.02.004

    2. [2]

      Wang, Y.; Wang, J.; Ma, Q.; Li, Z.; Yuan, Q. Nano Res. 2018, 11, 5499.  doi: 10.1007/s12274-018-2073-1

    3. [3]

      Leggett, R.; Lee-Smith, E. E.; Jickells, S. M.; Russell, D. A. Angew. Chem., Int. Ed. 2007, 46, 4100.  doi: 10.1002/anie.200700217

    4. [4]

      de la Hunty, M.; Spindler, X.; Chadwick, S.; Lennard, C.; Roux, C. Forensic. Sci. Int. 2014, 244, e48.  doi: 10.1016/j.forsciint.2014.08.028

    5. [5]

      Wang, Z.; Jiang, X.; Liu, W.; Lu, G.; Huang, X. Sci. China:Chem. 2019, 62, 889.  doi: 10.1007/s11426-019-9460-0

    6. [6]

      Peng, D.; Wu, X.; Liu, X.; Huang, M.; Wang, D.; Liu, R. ACS Appl. Mater. Interfaces 2018, 10, 32859.  doi: 10.1021/acsami.8b10371

    7. [7]

      Wang, J.; Wei, T.; Li, X.; Zhang, B.; Wang, J.; Huang, C.; Yuan, Q. Angew. Chem., Int. Ed. 2014, 53, 1616.  doi: 10.1002/anie.201308843

    8. [8]

      Wang, Z.; Zhang, P.; Liu, H.; Zhao, Z.; Xiong, L.; He, W.; Kwok, R. T. K.; Lam, J. W. Y.; Ye, R.; Tang, B. Z. ACS Appl. Mater. Interfaces 2019, 11, 17306.  doi: 10.1021/acsami.9b04269

    9. [9]

      Wang, J.; Ma, Q.; Liu, H.; Wang, Y.; Shen, H.; Hu, X.; Ma, C.; Yuan, Q.; Tan, W. Anal. Chem. 2017, 89, 12764.  doi: 10.1021/acs.analchem.7b03003

    10. [10]

      Zheng, L.; Ma, R.; Li, Q.; Sang, Y.; Wang, H.; Wang, B.; Yan, Q.; Chen, D.; Wang, M.; Feng, W.; Zhao, Y. Anal. Bioanal. Chem. 2019, 411, 4151.  doi: 10.1007/s00216-019-01718-0

    11. [11]

      Dalrymple, B.; Duff, J.; Menzel, E. J. Forensic Sci. 1977, 22, 106.

    12. [12]

      Müller, V.; Karami, N.; Nyberg, L K.; Pichler, C.; Torche Pedreschi, P. C.; Quaderi, S.; Fritzsche, J.; Ambjörnsson, T.; Åhrén, C.; Westerlund, F. ACS Infect. Dis. 2016, 2, 322.  doi: 10.1021/acsinfecdis.6b00017

    13. [13]

      Xu, L.; Cao, Z.; Ma, R.; Wang, Z.; Qin, Q.; Liu, E.; Su, B. Anal. Chem. 2019, 91, 12859.  doi: 10.1021/acs.analchem.9b02631

    14. [14]

      Sodhi, G. S.; Kaur, J. Forensic Sci. Int. 2001, 120, 172.  doi: 10.1016/S0379-0738(00)00465-5

    15. [15]

      Fung, T. C.; Grimwood, K.; Shimmon, R.; Spindler, X.; Maynard, P.; Lennard, C.; Roux, C. Forensic Sci. Int. 2011, 212, 143.  doi: 10.1016/j.forsciint.2011.06.004

    16. [16]

      Wargacki, S. P.; Lewis, L. A.; Dadmun, M. D. J. Forensic Sci. 2008, 53, 1138.  doi: 10.1111/j.1556-4029.2008.00822.x

    17. [17]

      Oden, S.; Hofsten, B. V. Nature 1954, 173, 449.  doi: 10.1038/173449a0

    18. [18]

      Li, C.-Y.; Li, B.-Y.; Li, M.-G.; Geng, X.-P.; Wang, W. J. Chin. People's Pub. Sec. Univ. (Sci. Technol.) 2003, 8, 22(in Chinese).
       

    19. [19]

      Chen, Y.; Zhang, C.-J.; Gao, D.-M.; Yang, F.; Han, D.-X.; Niu, L. Chin. J. Appl. Chem. 2011, 28, 1099(in Chinese).
       

    20. [20]

      Xu, C.; Zhou, R.; He, W.; Wu, L.; Wu, P.; Hou, X. Anal. Chem. 2014, 86, 3279.  doi: 10.1021/ac404244v

    21. [21]

      Wu, P.; Xu, C.; Hou, X.; Xu, J.; Chen, H. Chem. Sci. 2015, 6, 4445.  doi: 10.1039/C5SC01497B

    22. [22]

      Ma, R.; Shimmon, R.; Mcdonagh, A.; Maynard, P.; Lennard, C.; Roux, C. Forensic Sci. Int. 2012, 217, e23.  doi: 10.1016/j.forsciint.2011.10.033

    23. [23]

      Li, Y.; Xu, L.; Su, B. Chem. Commun. 2012, 48, 4109.  doi: 10.1039/c2cc30553d

    24. [24]

      Jin, X.; Dong, L.; Di, X.; Huang, H.; Liu, J.; Sun, X.; Zhang, X.; Zhu, H. RSC Adv. 2015, 5, 87306.  doi: 10.1039/C5RA16614D

    25. [25]

      Chen, H.; Chang, K.; Men, X.; Sun, K.; Fang, X.; Ma, C.; Zhao, Y.; Yin, S.; Qin, W.; Wu, C. ACS Appl. Mater. Interfaces 2015, 7, 14477.  doi: 10.1021/acsami.5b03749

    26. [26]

      Lee, J.; Joullié, M. M. Tetrahedron Lett. 2015, 56, 3378.  doi: 10.1016/j.tetlet.2014.12.109

    27. [27]

      Xu, L.; Li, Y.; Wu, S.; Liu, X.; Su, B. Angew. Chem., Int. Ed. 2012, 124, 8192.  doi: 10.1002/ange.201203815

    28. [28]

      Ma, R.-L.; Zhao, G.-H.; Piao, X.-J.; Chen, J. Forensic Sci. Technol. 2013, 38, 8(in Chinese).  doi: 10.3969/j.issn.1008-3650.2013.04.002

    29. [29]

      Zhou, X.-F.; Zhang, L.-Y. Forensic Sci. Technol. 2013, 38, 19(in Chinese).
       

    30. [30]

      Wei, Q.; Zhang, M.; Ogorevc, B.; Zhang, X. Analyst 2016, 141, 6172.  doi: 10.1039/C6AN01121G

    31. [31]

      Wang, M.; Li, M.; Yu, A.; Zhu, Y.; Yang, M.; Mao, C. Adv. Funct. Mater. 2017, 27, 1606243.  doi: 10.1002/adfm.201606243

    32. [32]

      Christofidis, G.; Morrissey, J.; Birkett, J. W. J. Forensic Sci. 2018, 63, 1616.  doi: 10.1111/1556-4029.13775

    33. [33]

      Yan, L.; Yu, Y.-L. Forensic Sci. Technol. 2018, 43, 312(in Chinese).
       

    34. [34]

      Wei, S.-Y.; Gong, X.; Ma, L.-Y.; Chen, J.-C.; Li, Q.-F.; Zhang, Z.-L. Bull. Chin. Ceramic Soc. 2019, 38, 2855(in Chinese).
       

    35. [35]

      Du, Q.-Y.; Dong, L.-P.; Wu, X.-J.; Wang, J.-F.; Chang, J.; Zhang, Y.-F. Chem. Res. Appl. 2020, 32, 1(in Chinese).  doi: 10.3969/j.issn.1004-1656.2020.01.001

    36. [36]

      Jin, X.-D.; Wang, H.; Xu, S.; Lv, Y.-B.; Xu, T.-X.; Ma, R.-L. Forensic Sci. Technol. 2020, 45, 1(in Chinese).
       

    37. [37]

      Bécue, A. Anal. Methods 2016, 8, 7983.  doi: 10.1039/C6AY02496C

    38. [38]

      Fraser, J.; Deacon, P.; Bleay, S.; Bremner, D. H. Sci. Justice 2014, 54, 133.  doi: 10.1016/j.scijus.2013.11.005

    39. [39]

      Sonnex, E.; Almond, M. J.; Bond, J. W. J. Forensic Sci. 2016, 61, 1100.  doi: 10.1111/1556-4029.13065

    40. [40]

      Bentolila, A.; Totre, J.; Zozulia, I.; Levin-Elad, M.; Domb, A J. Macromolecules 2013, 46, 4822.  doi: 10.1021/ma400837h

    41. [41]

      de Jong, R.; de Puit, M. Forensic Sci. Int. 2018, 291, 12.  doi: 10.1016/j.forsciint.2018.07.033

    42. [42]

      Pan, F.; Guo, W. J. Chin. People's Pub. Sec. Univ. (Sci. Technol.) 2014, 20, 5(in Chinese).
       

    43. [43]

      Yuan, C.-J. Chin. J. Chem. Educ. 2019, 40, 13(in Chinese).
       

    44. [44]

      Friedman, M. J. Agric. Food Chem. 2004, 52, 385.  doi: 10.1021/jf030490p

    45. [45]

      Friedman, M.; David Williams, L. Bioorg. Chem. 1974, 3, 267.  doi: 10.1016/0045-2068(74)90017-0

    46. [46]

      Hansen, D. B.; Joullié, M. M. Chem. Soc. Rev. 2005, 34, 408.  doi: 10.1039/B315496N

    47. [47]

      Jelly, R.; Lewis, S. W.; Lennard, C.; Lim, K. F.; Almog, J. Chem. Commun. 2008, 3513.

    48. [48]

      Hauze, D. B.; Petrovskaia, O.; Taylor, B.; Joullie, M. M.; Ramotowski, R.; Cantu, A. A. J. Forensic Sci. 1998, 43, 744.

    49. [49]

      Grigg, R.; Mongkolaussavaratana, T.; Anthony Pounds, C.; Sivagnanam, S. Tetrahedron Lett. 1990, 31, 7215.  doi: 10.1016/S0040-4039(00)97283-6

    50. [50]

      Zhao, Y.-B.; Dang, G.-L.; Li, Z.-R.; Guo, W. Chem. Res. Appl. 2019, 31, 1401(in Chinese).  doi: 10.3969/j.issn.1004-1656.2019.08.001

    51. [51]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.

    52. [52]

      Wan, W.; Tian, D.; Jing, Y.; Zhang, X.; Wu, W.; Ren, H.; Bao, H. Angew. Chem., Int. Ed. 2018, 57, 15510.  doi: 10.1002/anie.201809844

    53. [53]

      Jin, X.; Xin, R.; Wang, S.; Yin, W.; Xu, T.; Jiang, Y.; Ji, X.; Chen, L.; Liu, J. Sens. Actuators, B 2017, 244, 777.  doi: 10.1016/j.snb.2017.01.080

    54. [54]

      Pinto, A.; Svahn, N.; Lima, J. C.; Rodríguez, L. Dalton. Trans. 2017, 46, 11125.  doi: 10.1039/C7DT02349A

    55. [55]

      Tian, X.; Chen, L.; Li, Y.; Yang, C.; Nie, Y.; Zhou, C.; Wang, Y. J. Mater. Chem. C 2017, 5, 3669.  doi: 10.1039/C7TC00363C

    56. [56]

      Zhao, G.-S.; Shi, C.-X.; Guo, Z.-Q.; Zhu, W.-H.; Zhu, S.-Q. Chin. J. Org. Chem. 2012, 32, 1620(in Chinese).
       

    57. [57]

      Yang, Y.; Li, S.; Zhang, Q.; Kuang, Y.; Qin, A.; Gao, M.; Li, F.; Tang, B. Z. J. Mater. Chem. B 2019, 7, 2434.  doi: 10.1039/C9TB00121B

    58. [58]

      Xu, L.; Li, Y.; Li, S.; Hu, R.; Qin, A.; Tang, B. Z.; Su, B. Analyst 2014, 139, 2332.  doi: 10.1039/C3AN02367B

    59. [59]

      Jin, X.; Wang, H.; Xin, R.; Ma, Y.; Wu, G.; Xu, T.; Xia, X.; Wang, S.; Ma, R. Analyst 2020, 145, 2311.  doi: 10.1039/C9AN02158B

    60. [60]

      Singh, P.; Singh, H.; Sharma, R.; Bhargava, G.; Kumar, S. J. Mater. Chem. C 2016, 4, 11180.  doi: 10.1039/C6TC03701A

    61. [61]

      Singh, H.; Sharma, R.; Bhargava, G.; Kumar, S.; Singh, P. New J. Chem. 2018, 42, 12900.  doi: 10.1039/C8NJ02646G

    62. [62]

      Liu, R.; Song, Z.; Li, Y.; Li, Y.; Yao, W.; Sun, H.; Zhu, H. Sens. Actuators, B 2018, 259, 840.  doi: 10.1016/j.snb.2017.12.122

    63. [63]

      Song, Z.; Liu, R.; Li, X.; Zhu, H.; Lu, Y.; Zhu, H. J. Mater. Chem. C 2018, 6, 10910.  doi: 10.1039/C8TC03984D

    64. [64]

      Qiu, Z.; Hao, B.; Gu, X.; Wang, Z.; Xie, N.; Lam, J. W. Y.; Hao, H.; Tang, B. Z. Sci. China:Chem. 2018, 61, 966.  doi: 10.1007/s11426-018-9280-1

    65. [65]

      Wang, Y.; Li, C.; Qu, H.; Fan, C.; Zhao, P.; Tian, R.; Zhu, M. J. Am. Chem. Soc. 2020, 142, 7497.  doi: 10.1021/jacs.0c00124

    66. [66]

      Li, Y.; Sun, Y.; Deng, Y.; Liu, J.; Fu, J.; Ouyang, R.; Miao, Y. Sens. Actuators, B 2019, 283, 99.  doi: 10.1016/j.snb.2018.12.002

    67. [67]

      Wang, S.; Liu, L.-B.; Lv, F.-T. Introduction to Nanomaterials, Chemistry Industry Press, Beijing, 2018, pp. 158~167(in Chinese).

    68. [68]

      Yu, J.; Rong, Y.; Kuo, C.; Zhou, X.; Chiu, D. T. Anal. Chem. 2016, 89, 42.

    69. [69]

      Liou, S.; Ke, C.; Chen, J.; Luo, Y.; Kuo, S.; Chen, Y.; Fang, C.; Wu, C.; Chiang, C.; Chan, Y. ACS Macro Lett. 2016, 5, 154.  doi: 10.1021/acsmacrolett.5b00842

    70. [70]

      Jiang, Y.; Li, J.; Zhen, X.; Xie, C.; Pu, K. Adv. Mater. 2018, 30, 1705980.  doi: 10.1002/adma.201705980

    71. [71]

      Kim, D.; Lee, Y.; Jo, S.; Kim, S.; Lee, T. S. Sens. Actuators, B 2020, 307, 127641.  doi: 10.1016/j.snb.2019.127641

    72. [72]

      Wu, L.; Wu, I.; Dufort, C. C.; Carlson, M. A.; Wu, X.; Chen, L.; Kuo, C.; Qin, Y.; Yu, J.; Hingorani, S. R.; Chiu, D. T. J. Am. Chem. Soc. 2017, 139, 6911.  doi: 10.1021/jacs.7b01545

    73. [73]

      Chen, L.; Wu, L.; Yu, J.; Kuo, C. T.; Jian, T.; Wu, I. C.; Rong, Y.; Chiu, D. T. Chem. Sci. 2017, 8, 7236.  doi: 10.1039/C7SC03448B

    74. [74]

      Chen, H.; Ma, R.; Fan, Z.; Chen, Y.; Wang, Z.; Fan, L. J. Colloid Interface Sci. 2018, 528, 200.  doi: 10.1016/j.jcis.2018.05.079

    75. [75]

      Chen, H.; Ma, R.; Chen, Y.; Fan, L. ACS Appl. Mater. Interfacs 2017, 9, 4908.  doi: 10.1021/acsami.6b15951

    76. [76]

      Malik, A. H.; Kalita, A.; Iyer, P. K. ACS Appl. Mater. Interfacs 2017, 9, 37501.  doi: 10.1021/acsami.7b13390

    77. [77]

      Wu, C.; Chiu, D. T. Angew. Chem., Int. Ed. 2013, 52, 3086.  doi: 10.1002/anie.201205133

    78. [78]

      Lim, X. Nature 2016, 531, 26.  doi: 10.1038/531026a

    79. [79]

      Chen, Y. H.; Kuo, S. Y.; Tsai, W. K.; Ke, C. S.; Liao, C. H.; Chen, C. P.; Wang, Y. T.; Chen, H. W.; Chan, Y. H. Anal. Chem. 2016, 88, 11616.  doi: 10.1021/acs.analchem.6b03178

    80. [80]

      Shin-Il Kim, B.; Jin, Y.; Uddin, M. A.; Sakaguchi, T.; Woo, H. Y.; Kwak, G. Chem. Commun. 2015, 51, 13634.  doi: 10.1039/C5CC05357A

    81. [81]

      Yoon, J.; Jin, Y.; Sakaguchi, T.; Kwak, G. ACS Appl. Mater. Interfaces 2016, 8, 24025.  doi: 10.1021/acsami.6b05573

    82. [82]

      Zhang, S.; Liu, R.; Cui, Q.; Yang, Y.; Cao, Q.; Xu, W.; Li, L. ACS Appl. Mater. Interfaces 2017, 9, 44134.  doi: 10.1021/acsami.7b15612

    83. [83]

      Yang, Y.; Liu, R.; Cui, Q.; Xu, W.; Peng, R.; Wang, J.; Li, L. Colloids Surf., A 2019, 565, 118.  doi: 10.1016/j.colsurfa.2019.01.009

    84. [84]

      Wang, F.; Chen, J.; Zhou, H.; Li, W.; Zhang, Q.; Yu, C. Anal. Methods 2014, 6, 654.  doi: 10.1039/C3AY41802B

    85. [85]

      Wang, K.; Yang, Z.; Li, X. Chem.-Eur. J. 2015, 21, 5680.  doi: 10.1002/chem.201406447

    86. [86]

      Huang, H.; Zhou, Y.; Wang, M.; Zhang, J.; Cao, X.; Wang, S.; Cao, D.; Cui, C. Angew. Chem., Int. Ed. 2019, 58, 10132.  doi: 10.1002/anie.201903418

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    3. [3]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    4. [4]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    17. [17]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    18. [18]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    19. [19]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    20. [20]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

Metrics
  • PDF Downloads(132)
  • Abstract views(4763)
  • HTML views(1007)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return