Citation: Yu Shuyan, Gao Lihong, Lan Hongbing, Qian Hengyu, Yin Zhigang, Shang Yongjia. Recent Progress in the Reactions of Aurone-Derived Azadienes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2714-2724. doi: 10.6023/cjoc202004034 shu

Recent Progress in the Reactions of Aurone-Derived Azadienes

  • Corresponding author: Yu Shuyan, yushuyan_zzuli@163.com Shang Yongjia, shyj@mail.ahnu.edu.cn
  • Received Date: 23 April 2020
    Revised Date: 16 May 2020
    Available Online: 29 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21602207) and the Foundation of Henan Educational Committee (No. 17A150022)the Foundation of Henan Educational Committee 17A150022the National Natural Science Foundation of China 21602207

Figures(20)

  • Owing to the important physiological and pharmacological activities of benzofuran compounds, the exploration for efficient synthesis methods is of great value and wide application. Aurone-derived azadienes have been identified to be effective reactants in the field of organic synthesis owing to the driving force of aromatization. A large number of reactions based on 1, 4-conjugate addition and tandem cyclization have been reported, which exhibited great advantages in the construction of heterocycles with benzofuran skeletons. In this paper, the recent progress in the chemical transformations of aurone-derived azadienens is reviewed, with emphasis on the employed catalytic system and the plausible mechanism of some reactions.
  • 加载中
    1. [1]

      Galal, S. A.; El-All, A. S. A.; Abdallah, M. M.; El-Diwani, H. I. Bioorg. Med. Chem. Lett. 2009, 19, 2420.
      (b) Shamsuzzaman, H. K. Eur. J. Med. Chem. 2015, 97, 483.
      (c) Radadiya, A.; Shah, A. Eur. J. Med. Chem. 2015, 97, 356.
      (d) Hiremathad, A.; Patil, M. R.; Chethana, K. R.; Chand, K.; Santos, M. A.; Keri, R. S. RSC Adv. 2015, 5, 96809.

    2. [2]

    3. [3]

      Gu, Z.; Zhou, J.; Jiang, G. F.; Zhou, Y. G. Org. Chem. Front. 2018, 5, 1148.  doi: 10.1039/C7QO01158J

    4. [4]

      Logusch, E. W.; Walker, D. M.; McDonaldand, J. F.; Franz, J. E. Biochemistry 1990, 29, 366.  doi: 10.1021/bi00454a009

    5. [5]

      Dunbar, K. L.; Scharf, D. H.; Litomska, A.; Hertweck, C. Chem. Rev. 2017, 117, 5521.  doi: 10.1021/acs.chemrev.6b00697

    6. [6]

      Zhou, Y. G.; Jiang, G. F.; Xie, J. J.; Gu, Z. Asian J. Org. Chem. 2018, 7, 1561.  doi: 10.1002/ajoc.201800299

    7. [7]

      Roethle, P. A.; Trauner, D. Nat. Prod. Rep. 2008, 25, 298.  doi: 10.1039/b705660p

    8. [8]

      Cui, H. L.; Huang, J. R.; Lei, J.; Wang, Z. F.; Chen, S.; Wu, L.; Chen, C. Y. Org. Lett. 2010, 12, 720.  doi: 10.1021/ol100014m

    9. [9]

      Lin, W.; Lin, X.; Cheng, Y. Y.; Chang, X. Y.; Zhou, S.; Li, P. F.; Li. W. J. Org. Chem. Front. 2019, 6, 2452.  doi: 10.1039/C9QO00597H

    10. [10]

      Li. W. J.; Lin, W.; Zhang, C.; Xu, W.; Cheng, Y. Y.; Li, P. F. Adv. Synth. Catal. 2019, 361, 476.  doi: 10.1002/adsc.201801422

    11. [11]

      Nair, V.; Thomas, S.; Mathew, S. C.; Abhilash, K. G. Tetrahedron 2006, 62, 6731.  doi: 10.1016/j.tet.2006.04.081

    12. [12]

      Xie, H. P.; Wu, B.; Wang, X. W.; Zhou, Y. G. Chin. J. Catal. 2019, 40, 1566.  doi: 10.1016/S1872-2067(19)63396-6

    13. [13]

      (a) Terada, M. Chem. Commun. 2008, 35, 4097.
      (b) Terada, M. Synthesis 2010, 1929.
      (c) Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, S. B. Org. Biomol. Chem. 2010, 8, 5262.

    14. [14]

      Wang, C. J.; Yang, Q. Q.; Wang, M. X.; Shang, Y. H.; Tong, X. Y.; Deng, Y. H.; Shao, Z. H. Org. Chem. Front. 2020, 7, 609.  doi: 10.1039/C9QO01391A

    15. [15]

      (a) Saracoglu, N. Top. Heterocycl. Chem. 2007, 11, 145.
      (b) Kong, D.; Xue, T.; Guo, B.; Cheng, J.; Liu, S.; Wei, J.; Lu, Z.; Liu, H.; Gong, G.; Lan, T.; Hu, W.; Yang, Y. J. Med. Chem. 2019, 62, 3088.

    16. [16]

      Wang, C. S.; Li, T. Z.; Chen, Y. C.; Zhou, J.; Mei, G. J.; Shi, F. J. Org. Chem. 2019, 84, 3214.  doi: 10.1021/acs.joc.8b03004

    17. [17]

      (a) Khan, I. A.; Kulkarni, M. V.; Gopal, M.; Shahabuddin, M. S.; Sun, C. M. Bioorg. Med. Chem. Lett. 2005, 15, 3584.
      (b) Voigt, B.; Meijer, L.; Lozach, O.; Schä chtele, C.; Totzke, F.; Hilgeroth, A. Bioorg. Med. Chem. Lett. 2005, 15, 823.

    18. [18]

      Zeng, R.; Shan, C. Y.; Liu, M.; Jiang, K.; Ye, Y.; Liu, T. Y.; Chen, Y. C. Org. Lett. 2019, 21, 2312.  doi: 10.1021/acs.orglett.9b00598

    19. [19]

      Rong, Z. Q.; Wang, M.; Hao, C.; Chow, E.; Zhao, Y. Chem.-Eur. J. 2016, 22, 9483.  doi: 10.1002/chem.201601626

    20. [20]

      Gu, Z.; Wu, B.; Jiang, G. F.; Zhou, Y. G. Chin. J. Chem. 2018, 36, 1130.  doi: 10.1002/cjoc.201800330

    21. [21]

      Li, X. P.; Yan, J. Z.; Qin, J. L.; Lin, S. L.; Chen, W. W.; Zhan, R. T.; Huang, H. C. J. Org. Chem. 2019, 84, 8035.  doi: 10.1021/acs.joc.9b00911

    22. [22]

      Chen, J. L.; Jia, P. H.; Huang, Y. Org. Lett. 2018, 20, 6715.  doi: 10.1021/acs.orglett.8b02810

    23. [23]

      Allen, A. D.; Tidwell, T. T. Chem. Rev. 2013, 113, 7287.  doi: 10.1021/cr3005263

    24. [24]

      Bernardim, B.; Hardman-Baldwin, A. M.; Burtoloso, A. C. B. RSC Adv. 2015, 5, 13311.  doi: 10.1039/C4RA15670F

    25. [25]

      Tan, T.; Zhang, Z. J.; Zhang, Y. C.; Song, J. Org. Lett. 2019, 21, 7897.  doi: 10.1021/acs.orglett.9b02892

    26. [26]

      Xie, H. P.; Sun, L.; Wu, B.; Zhou, Y. G. J. Org. Chem. 2019, 84, 15498.  doi: 10.1021/acs.joc.9b02512

    27. [27]

      (a) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry, Higher Education Press, Beijing, 2009.
      (b) Tomasi, S.; Renault, J.; Martin, B.; Duhieu, S.; Cerec, V.; LeRoch, M.; Uriac, P.; Delcros, J. G. J. Med. Chem. 2010, 53, 7647.
      (c) Freidinger, R. M. J. Med. Chem. 2003, 46, 5553.
      (d) Pegoraro, S.; Lang, M.; Dreker, T.; Kraus, J.; Hamm, S.; Meere, C.; Feurle, J.; Tasler, S.; Prütting, S.; Kura, Z.; Visan, V.; Grissmer, S. Bioorg. Med. Chem. Lett. 2009, 19, 2299.

    28. [28]

      (a) Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
      (b) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
      (c) Zhao, Q. Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724.
      (d) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.

    29. [29]

      Chen, J. L.; Huang, Y. Org. Lett. 2017, 19, 5609.  doi: 10.1021/acs.orglett.7b02742

    30. [30]

      (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
      (b) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485.
      (c) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511.
      (d) Grossmann, D. A.; Enders, D. Angew. Chem.. Int. Ed. 2012, 51, 314.

    31. [31]

      Gao, Z. H.; Chen, K. Q.; Zhang, Y.; Kong, L. M.; Li, Y.; Ye, S. J. Org. Chem. 2018, 83, 15225.  doi: 10.1021/acs.joc.8b02497

    32. [32]

      Chen, K. Q.; Gao, Z. H.; Ye, S. Org. Chem. Front. 2019, 6, 405.  doi: 10.1039/C8QO01302K

    33. [33]

      (a) Trost, B. M. Angew. Chem.. Int. Ed. 1986, 25, 1.
      (b) Trost, B. M. Pure Appl. Chem. 1988, 60, 1615.

    34. [34]

      Shintani, R.; Park, S.; Duan, W. L.; Hayashi, T. Angew. Chem.. Int. Ed. 2007, 46, 5901.  doi: 10.1002/anie.200701529

    35. [35]

      Trost, B. M.; Zuo, Z. J. Angew. Chem.. Int. Ed. 2020, 59, 1243.  doi: 10.1002/anie.201911537

    36. [36]

      (a) Hussain, A.; Yousuf, S. K.; Mukherjee, D. RSC Adv. 2014, 4, 43241.
      (b) Faulkner, D. J. Nat. Prod. Rep. 1984, 1, 251.
      (c) Mallinson, J.; Collins, I. Future Med. Chem. 2012, 4, 1409.
      (d) Brown, H. C.; Fletcher, R. S.; Johannesen, R. B. J. Am. Chem. Soc. 1951, 73, 212.
      (e) Prelog, V. Pure Appl. Chem. 1963, 6, 545.

    37. [37]

      Ni, H. Z.; Tang, X. D.; Zheng, W. R.; Yao, W. J.; Ullah, N.; Lu, Y. X. Angew. Chem.. Int. Ed. 2017, 56, 14222.  doi: 10.1002/anie.201707183

    38. [38]

      (a) Evans, A. E.; Farber, S.; Brunet, S.; Mariano, P. J. Cancer 1963, 16, 1302.
      (b) Armstrong, J. G.; Dyke, R. W.; Fouts, P. J. Science 1964, 143, 703.
      (c) Shimokawa, T.; Kinjo, J.; Yamahara, J.; Yamasaki, M.; Nohara, T. Chem. Pharm. Bull. 1985, 33, 3545.

    39. [39]

      Yang, L. C.; Rong, Z. Q.; Wang, Y. N.; Tan, Z. Y.; Wang, M.; Zhao, Y. Angew. Chem.. Int. Ed. 2017, 56, 2927.  doi: 10.1002/anie.201611474

    40. [40]

      Rong, Z. Q.; Yang, L. C.; Liu, S.; Yu, Z. Y.; Wang, Y. N.; Tan, Z. Y.; Huang, R. Z.; Lan, Y.; Zhao, Y. J. Am. Chem. Soc. 2017, 139, 15304.  doi: 10.1021/jacs.7b09161

    41. [41]

      Wang, Y. N.; Yang, L. C.; Rong, Z. Q.; Liu, T. L.; Liu, R. Y.; Zhao, Y. Angew. Chem.. Int. Ed. 2018, 57, 1596.  doi: 10.1002/anie.201711648

    42. [42]

      (a) Lee, S. H.; Seo, H. J.; Lee, S. H.; Jung, M. E.; Park, J. H.; Park, H. J.; Yoo, J.; Yun, H.; Na, J.; Kang, S. Y.; Song, K. S.; Kim, M.; Chang, C. H.; Kim, J.; Lee, J. J. Med. Chem. 2008, 51, 7216.
      (b) Bilich, A.; Winther, M. D. Chem. Abstr. 2008, 149, 556638.
      (c) Barnes-Seeman, D.; Jain, M.; Bell, L.; Ferreira, S.; Cohen, S.; Chen, X. H.; Amin, J.; Snodgrass, B.; Hatsis, P. ACS Med. Chem. Lett. 2013, 4, 514.
      (d) Bezençon, O.; Heidmann, B.; Siegrist, R.; Stamm, S.; Richard, S.; Pozzi, D.; Corminboeuf, O.; Roch, C.; Kessler, M.; Ertel, E. A.; Reymond, I.; Pfeifer, T.; de Kanter, R.; Toeroek-Schafroth, M.; Moccia, L. G.; Mawet, J.; Moon, R.; Rey, M.; Capeleto, B.; Fournier, E. J. Med. Chem. 2017, 60, 9769.

    43. [43]

      Bos, M.; Poisson, T.; Pannecoucke, X.; Charette, A. B.; Jubault, P. Eur. J. Chem. 2017, 23, 495.

    44. [44]

      Chen, T.; Zhang, Y.; Fu, Z. Q.; Huang, W. Asian J. Org. Chem. 2019, 8, 2175.  doi: 10.1002/ajoc.201900651

    45. [45]

      Marques, A. S.; Duhail, T.; Marrot, J.; Chataigner, I.; Coeffard, V.; Vincent, G.; Moreau, X. Angew. Chem.. Int. Ed. 2019, 58, 9969.  doi: 10.1002/anie.201903860

    46. [46]

      Qi, J. F.; Tang, H. B.; Chen, C. W.; Cui, S. L.; Xu, G. Org. Chem. Front. 2019, 6, 2760.  doi: 10.1039/C9QO00653B

  • 加载中
    1. [1]

      Yinuo Wang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Synthesis of Bromobenzoxazine: Introduce a Comprehensive Organic Chemistry Experiment Transformed from Undergraduate Research Innovation. University Chemistry, 2025, 40(10): 208-216. doi: 10.12461/PKU.DXHX202411077

    2. [2]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    7. [7]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    8. [8]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    9. [9]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    10. [10]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    14. [14]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    15. [15]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    16. [16]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    17. [17]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    18. [18]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    19. [19]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    20. [20]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

Metrics
  • PDF Downloads(19)
  • Abstract views(1972)
  • HTML views(433)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return