Citation: Chen Kaihong, Li Hongru, He Liangnian. Advance and Prospective on CO2 Activation and Transformation Strategy[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2195-2207. doi: 10.6023/cjoc202004030 shu

Advance and Prospective on CO2 Activation and Transformation Strategy

  • Corresponding author: He Liangnian, heln@nankai.edu.cn
  • Received Date: 19 April 2020
    Revised Date: 22 May 2020
    Available Online: 29 May 2020

    Fund Project: the China Postdoctoral Science Foundation 2018M641624Project supported by the National Natural Science Foundation of China (No. 21975135) and the China Postdoctoral Science Foundation (No. 2018M641624)the National Natural Science Foundation of China 21975135

Figures(23)

  • Climate change and depletion of fossil fuels have drawn considerable attention. Considering carbon dioxide is both the dominant greenhouse gas and renewable C1 source, CO2 valorization into valuable chemicals is considered to reconcile the environment benefit and sustainable chemistry development. Unfortunately, the thermodynamic stability and kinetic inertness of CO2 make its chemical transformation challenging. As a consequence, developing highly efficient catalytic systems and synthetic protocols is crucial for CO2 conversion. In recent years, He's group made great progress on strategy design and catalyst development for CO2 conversion. A series novel CO2 conversion strategies are proposed, including CO2 capture and in-situ transformation, hierarchical reductive functionalization of CO2, designing thermodynamically favorable reactions by multi-component cascade reaction and photo-promoted CO2 transformation. Concurrently, the corresponding highly efficient catalytic systems were also developed based on the reaction mechanism and thus CO2 transformation was successfully performed under mild conditions. It is hoped that this review can arouse broad concern on CO2 transformation and spur its further development.
  • 加载中
    1. [1]

    2. [2]

      (a) Yang, Z.-Z.; He, L.-N.; Gao, J.; Liu, A.-H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.
      (b) Fu, H.-C.; You, F.; Li, H.-R.; He, L.-N. Front. Chem. 2019, 7, 525.
      (c) Kar, S.; Goeppert, A.; Prakash, G. K. S. Acc. Chem. Res. 2019, 52, 2892.

    3. [3]

      Yang, Z.-Z.; He, L.-N.; Zhao, Y.-N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971.  doi: 10.1039/c1ee02156g

    4. [4]

      Zhao, Y.-N.; Yang, Z.-Z.; Luo, S.-H.; He, L.-N. Catal. Today 2013, 200, 2.  doi: 10.1016/j.cattod.2012.04.006

    5. [5]

      Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N.; Gao, J.; Yin, Z.-S. Green Chem. 2012, 14, 519.  doi: 10.1039/c2gc16039k

    6. [6]

      Yang, Z.-Z.; He, L.-N.; Zhao, Y.-N.; Yu, B. Environ. Sci. Technol. 2013, 47, 1598.  doi: 10.1021/es304147q

    7. [7]

      (a) Meng, X.; Ju, Z.; Zhang, S.; Liang, X.; Solms, N.; Zhang, X.; Zhang, X. Green Chem. 2019, 21, 3456.
      (b) Luo, X.; Chen, K.; Li, H.; Wang, C. Int. J. Hydrogen Energy 2016, 41, 9175.

    8. [8]

      (a) Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. Angew. Chem., Int. Ed. 2014, 53, 5922.
      (b) Liu, A.-H.; Yu, N.; He, L.-N. Greenhouse Gases: Sci. Technol. 2015, 5, 17.
      (c) Shi, G.; Chen, K.; Wang, Y.; Li, H.; Wang, C. ACS Sustainable Chem. Eng. 2018, 6, 5760.
      (d) Lang, X.-D.; Yu, Y.-C.; Li, Z.-M.; He, L.-N. J. CO2 Util. 2016, 15, 115.

    9. [9]

      Liu, A.-H.; Ma, R.; Song, C, ; Yang, Z.-Z.; Yu, A.; Cai, Y.; He, L.-N.; Zhao, Y.-N.; Yu, B.; Song, Q.-W. Angew. Chem., Int. Ed. 2012, 51, 11306.  doi: 10.1002/anie.201205362

    10. [10]

      Zhang, S.; Li, Y.-N.; Zhang, Y.-W.; He, L.-N.; Yu, B.; Song, Q.-W.; Lang, X.-D. ChemSusChem 2014, 7, 1484.  doi: 10.1002/cssc.201400133

    11. [11]

      (a) Li, Y.-N.; He, L.-N.; Liu, A.-H.; Lang, X.-D.; Yang, Z.-Z.; Yu, B.; Luan, C.-R. Green Chem. 2013, 15, 2825.
      (b) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. J. Am. Chem. Soc. 2016, 138, 778.
      (c) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. Green Chem. 2016, 18, 5831.

    12. [12]

      Li, Y.-N.; He, L.-N.; Lang, X.-D.; Liu, X.-F.; Zhang, S. RSC Adv. 2014, 4, 49995.  doi: 10.1039/C4RA08740B

    13. [13]

      Das Neves Gomes, C.; Jacquet, O.; Villiers, C.; Thuery, P.; Ephritikhine, M.; Cantat, T. Angew. Chem., Int. Ed. 2012, 51, 187.  doi: 10.1002/anie.201105516

    14. [14]

      (a) Liu, X.-F.; Ma, R.; Qiao, C.; Cao, H.; He, L.-N. Chem.-Eur. J. 2016, 22, 16489.
      (b) Fang, C.; Lu, C.; Liu, M.; Zhu, Y.; Fu, Y.; Liu, B.-L. ACS Catal. 2016, 6, 7876.

    15. [15]

      (a) Liu, X.-F.; Qiao, C.; Li, X.-Y.; He, L.-N. Green Chem. 2017, 19, 1726.
      (b) Liu, X.-F.; Qiao, C.; Li, X.-Y.; He, L.-N. Pure Appl. Chem. 2018, 90, 1099.
      (c) Liu, X.-F.; Li, X.-Y.; Qiao, C.; He, L.-N. Synlett 2018, 28, 548.
      (d) Liu, X.-F.; Li, X.-Y.; He, L.-N. Eur. J. Org. Chem. 2019, 2019, 2347.

    16. [16]

      (a) Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.
      (b) Li, X.-Y.; Zheng, S.-S.; Liu, X.-F.; Yang, Z.-W.; Tan, T.-Y.; Yu, A.; He, L.-N. ACS Sustainable Chem. Eng. 2018, 6, 8130.
      (c) Li, G.; Chen, J.; Zhu, D.-Y.; Chen, Y.; Xia, J.-B. Adv. Synth. Catal. 2018, 360, 2364.

    17. [17]

      (a) Wang, M.-Y.; Wang, N.; Liu, X.-F.; Qiao, C.; He, L.-N. Green Chem. 2018, 20, 1564.
      (b) Liu, X.-F.; Li, X.-Y.; Qiao, C.; Fu, H.-C.; He, L.-N. Angew. Chem., Int. Ed. 2017, 56, 7425.
      (c) Cao, Y.; Wang, N.; He, X.; Li, H.-R.; He, L.-N. ACS Sustainable Chem. Eng. 2018, 6, 15032.

    18. [18]

      (a) Li, X.-D.; Xia, S.-M.; Chen, K.-H.; Liu, X.-F.; Li, H.-R.; He, L.-N. Green Chem. 2018, 20, 4853.
      (b) Li, W.-D.; Zhu, D.-Y.; Li, G.; Chen, J.; Xia, J.-B. Adv. Synth. Catal. 2019, 361, 5098.

    19. [19]

      Lang, X.-D.; He, L.-N. ChemSusChem 2018, 11, 2062.  doi: 10.1002/cssc.201800902

    20. [20]

      (a) Qiao, C.; Liu, X.-F.; Liu, X.; He, L.-N. Org. Lett. 2017, 19, 1490.
      (b) Qiao, C.; Yao, X.-Y.; Liu, X.-F.; Li, H.-R.; He, L.-N. Asian J. Org. Chem. 2018, 7, 1815.

    21. [21]

      Lang, X.-D.; You, F.; He, X.; Yu, Y.-C.; He, L.-N. Green Chem. 2019, 21, 509.  doi: 10.1039/C8GC03933J

    22. [22]

      (a) Diao, Z.-F.; Zhou, Z.-H.; Guo, C.-X.; Yu, B.; He, L.-N. RSC Adv. 2016, 6, 32400.
      (b) Du, Y.; Kong, D.-L.; Wang, H.-Y.; Cai, F.; Tian, J.-S.; Wang, J.-Q.; He, L.-N. J. Mol. Catal. A: Chem. 2005, 241, 233.
      (c) Tamura, M.; Honda, M.; Nakagawa, Y.; Tomishige, K. J. Chem. Technol. Biotechnol. 2014, 89, 19.
      (d) Liu, A.-H.; Li, Y.-N.; He, L.-N. Pure Appl. Chem. 2012, 84, 581.
      (e) Lang, X.-D.; He, L.-N. Chem. Rec. 2016, 16, 1337.
      (f) Li, X.-D.; He, X.; Liu, X.-F.; He, L.-N. Sci. China: Chem. 2017, 60, 841.
      (g) Wang, M.-Y.; He, L.-N. Sci. China: Chem. 2016, 59, 507.

    23. [23]

      Zhou Z.-H.; Xia S.-M.; He, L.-N. Acta Phys.-Chim. Sin. 2018, 34, 838.  doi: 10.3866/PKU.WHXB201712271

    24. [24]

      Zhou, Z.-H.; Song, Q.-W.; He, L.-N. ACS Omega 2017, 2, 337.  doi: 10.1021/acsomega.6b00407

    25. [25]

      Song, Q.-W.; Zhou, Z.-H.; Wang, M.-Y.; Zhang, K.; Liu, P.; Xun, J.-Y.; He, L.-N. ChemSusChem 2016, 9, 2054.  doi: 10.1002/cssc.201600470

    26. [26]

      Li, X.-D.; Song, Q.-W.; Lang, X.-D.; Chang, Y.; He, L.-N. ChemPhysChem 2017, 18, 3182.  doi: 10.1002/cphc.201700297

    27. [27]

      Li, X.-D.; Cao, Y.; Ma, R.; He, L.-N. J. CO2 Util. 2018, 25, 338.  doi: 10.1016/j.jcou.2018.01.022

    28. [28]

      Xia, S.-M.; Song, Y.; Li, X.-D.; Li, H.-R.; He, L.-N. Molecules 2018, 23, 3033.  doi: 10.3390/molecules23113033

    29. [29]

      Song, Q.-W.; Yu, B.; Li, X.-D.; Ma, R.; Diao, Z.-F.; Li, R.-G.; Li, W.; He, L.-N. Green Chem. 2014, 16, 1633.  doi: 10.1039/c3gc42406e

    30. [30]

      Song, Q.-W.; Zhou, Z.-H.; Yin, H.; He, L.-N. ChemSusChem 2015, 8, 3967.  doi: 10.1002/cssc.201501176

    31. [31]

      Li, X.-D.; Lang, X.-D.; Song, Q.-W.; Guo, Y.-K.; He, L.-N. Chin. J. Org. Chem. 2016, 36, 744(in Chinese).  doi: 10.6023/cjoc201512037

    32. [32]

      (a) Song, Q.-W.; Chen, W.-Q.; Ma, R.; Yu, A.; Li, Q.-Y.; Chang, Y.; He, L.-N. ChemSusChem 2015, 8, 821.
      (b) Zhou, Z.-H.; Guo, C.-X.; Xie, J.-N.; Liu, K.-X.; He, L.-N. Curr. Org. Synth. 2017, 14, 1185.
      (c) He, L.-N. Curr. Org. Synth. 2020, 17, 2.
      (d) He, L.-N. Mini-Rev. Org. Chem. 2019, 16, 409.

    33. [33]

      (a) Zhou, Z.-H.; Zhang, X.; Huang, Y.-F.; Chen, K.-H.; He, L.-N. Chin. J. Catal. 2019, 40, 1345.
      (b) Zhou, Z.-H.; Chen, K.-H.; He, L.-N. Chin. J. Chem. 2019, 37, 1223.

    34. [34]

      (a) Bonin, J.; Maurin, A.; Robert, M. Coord. Chem. Rev. 2017, 334, 184.
      (b) Tamaki, Y.; Ishitani, O. ACS Catal. 2017, 7, 3394.
      (c) Chang, X.; Wang, T.; Yang, P.; Zhang, G.; Gong, J. Adv. Mater. 2018, 1804710.
      (d) Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194.
      (e) Zhao, Y.; Waterhouse, G. I. N.; Chen G.; Xiong, X.; Wu, L. Z.; Tung, C. H.; Zhang, T. Chem. Soc. Rev. 2019, 48, 1972.

    35. [35]

      (a) Ye, J. H.; Miao, M.; Huang, H.; Yan, S. S.; Yin, Z. B.; Zhou, W. J.; Yu, D. G. Angew. Chem., Int. Ed. 2017, 56, 15416.
      (b) Yin, Z. B.; Ye, J. H.; Zhou, W. J.; Zhang, Y. H.; Ding, L.; Gui, Y. Y.; Yan, S. S.; Li, J.; Yu, D. G. Org. Lett. 2018, 20, 190.
      (c) Sun, L.; Ye, J. H.; Zhou, W. J.; Zeng, X.; Yu, D. G. Org. Lett. 2018, 20, 3049.
      (d) Ju, T.; Fu, Q.; Ye, J. H.; Zhang, Z.; Liao, L. L.; Yan, S. S.; Tian, X. Y.; Luo, S. P.; Li, J.; Yu, D. G. Angew. Chem., Int. Ed. 2018, 57, 13897.
      (e) Liao, L. L.; Cao, G. M.; Ye, J. H.; Sun, G. Q.; Zhou, W. J.; Gui, Y. Y.; Yan, S. S.; Shen, G.; Yu, D. G. J. Am. Chem. Soc. 2018, 140, 17338.
      (f) Fan, X.; Gong, X.; Ma, M. Nat. Commun. 2018, 9, 4936.
      (g) Murata, K.; Numasawa, N.; Shimomaki, K.; Chem. Commun. 2017, 53, 3098.
      (h) Yeung, C. S. Angew. Chem., Int. Ed. 2019, 58, 5491.

    36. [36]

      Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240.  doi: 10.1039/C6GC03200A

    37. [37]

      He, X.; Cao, Y.; Lang, X.-D.; Wang, N.; He, L.-N. ChemSusChem 2018, 11, 3382.  doi: 10.1002/cssc.201801621

    38. [38]

    39. [39]

      (a) Poland, S. I.; Darensbourg, D. J. Green Chem. 2017, 19, 4990.
      (b) Wang, Y.; Darensbourg, D. J. Coord. Chem. Rev. 2018, 372, 85.
      (c) Lu, X. B.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462.
      (d) Kember, M. R.; Buchard, A.; Williams, C. K. Chem. Commun. 2011, 47, 141.
      (e) Lu, X. B.; Ren, W. M.; Wu, G. P. Acc. Chem. Res. 2012, 45, 1721.

    40. [40]

      (a) Leino, E.; Maki-Arvela, P.; Eta, V. Appl. Catal., A 2010, 383, 1.
      (b) Shukla, K.; Srivastava, V. C. Catal. Rev.: Sci. Eng. 2017, 59, 1.
      (c) Dai, W. L.; Luo, S. L.; Yin, S. F. Appl. Catal., A 2009, 366, 2.
      (d) Sakakura, T.; Kohno, K. Chem. Commun. 2009, 1312.
      (e) Tamboli, A. H.; Chaugule, A. A.; Kim, H. Chem. Eng. J. 2017, 323, 530.

    41. [41]

      (a) Broere, D. L. J.; Mercado, B. Q.; Holland, P. L. Angew. Chem., Int. Ed. 2018, 57, 6507.
      (b) Waldman, T. E.; Mcghee, W. D. J. Chem. Soc., Chem. Commun. 1994, 8, 957.
      (c) Camp, C.; Chatelain, L.; Kefalidis, C. E. Chem. Commun. 2015, 51, 15454.
      (d) Maria, L.; Bandeira, N. A. G.; Marcalo, J. Chem. Commun. 2020, 56, 431.
      (e) Keane, A. J.; Farrell, W. S.; Yonke, B. L. Angew. Chem., Int. Ed. 2015, 54, 10220.

    42. [42]

    43. [43]

    44. [44]

      Wang, H.; Zhao, Y.; Ke, Z.; Yu, B.; Li, R.; Wu, Y.; Wang, Z.; Han, J.; Liu, Z. Chem. Commun. 2019, 55, 3069.  doi: 10.1039/C9CC00819E

    45. [45]

      (a) Akatsuka, M.; Kawaguchi, Y.; Itoh, R.; Ozawa, A.; Yamamoto, M.; Tanabe, T.; Yoshida, T. Appl. Catal., B 2020, 262, 118247.
      (b) Teramura, K.; Hori, K.; Terao, Y.; Huang, Z.; Iguchi, S.; Wang, Z.; Asakura, H.; Hosokawa, S.; Tanaka, T. J. Phys. Chem. C 2017, 121, 8711.
      (c) Nakada, A.; Ishitani, O. ACS Catal. 2018, 8, 354.
      (d) Takayama, T.; Sato, K.; Fujimura, T.; Kojima, Y.; Iwase A.; Kudo, A. Faraday Discuss. 2017, 198, 397.
      (e) Barman, S.; Das, S.; Sreejith S. S.; Garai, S.; Pochamoni, R.; Roy, S. Chem. Commun. 2018, 54, 2369.
      (f) Nakanishi, H.; Iizuka, K.; Takayama, T.; Iwase, A.; Kudo, A. ChemSusChem 2017, 10, 112.
      (g) Yin, G.; Sako, H.; Gubbala, R. V.; Ueda, S.; Yamaguchi, A.; Abe, H.; Miyauchi, M. Chem. Commun. 2018, 54, 3947.

    46. [46]

      (a) Xu, S.; Carter, E. A. Chem. Rev. 2019, 119, 6631;
      (b) Yuan, Y. P.; Ruan, L. W.; Barber, J. Energy Environ. Sci. 2014, 7, 3934.
      (c) Daiyan, R.; Lu, X.; Ng, Y. H. ChemSusChem 2017, 10, 4342.

    47. [47]

      He, L. N.; Wang, J. Q.; Wang, J. L. Pure Appl. Chem. 2009, 81, 2069.  doi: 10.1351/PAC-CON-08-10-22

    48. [48]

      (a) Lang, X. D.; Yu, Y. C.; He, L. N. J. Mol. Catal. A: Chem. 2016, 420, 208.
      (b) Xu, H.; Liu, X. F.; Cao, C. S.; Zhao, B.; Cheng, P.; He, L. N. Adv. Sci. 2016, 3, 1600048.
      (c) Cao, C. S.; Xia, S. M.; Song, Z. J.; Xu, H.; Shi, Y.; He, L. N.; Cheng, P.; Zhao, B. Angew. Chem., Int. Ed. 2020, 59, 8586.

    49. [49]

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    20. [20]

      Meihong Luo Hongyu Wang . Teaching Reform of Benzoin Oxidation Experiment in the Context of Green Pharmaceutical Chemistry. University Chemistry, 2025, 40(5): 376-382. doi: 10.12461/PKU.DXHX202411055

Metrics
  • PDF Downloads(105)
  • Abstract views(3822)
  • HTML views(1450)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return