Citation: Hao Bingjie, Song Tao, Huang Xiaoyu, Ye Mao, Qian Wenhao. Organic Reactions in Covalent Functionalization of Graphene[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3279-3288. doi: 10.6023/cjoc202004022 shu

Organic Reactions in Covalent Functionalization of Graphene

  • Corresponding author: Huang Xiaoyu, xyhuang@mail.sioc.ac.cn Qian Wenhao, pingyanlaoto@163.com
  • Received Date: 14 April 2020
    Revised Date: 4 May 2020
    Available Online: 11 May 2020

    Fund Project: the National Natural Science Foundation of China 51773222the Shanghai Medical Key Specialty ZK2019B12the Scientific Research Project of Science and Technology Commission of Xuhui Municipality SHXH201613Project supported by the National Natural Science Foundation of China (No. 51773222), the Shanghai Scientific and Technological Innovation Project (No. 20ZR1452200), the Scientific Research Project of Science and Technology Commission of Xuhui Municipality (No. SHXH201613), the Scientific Research Project of Xuhui Provincial Commission of Health and Family Planning (No. SHXH201706), the Program for Outstanding Medical Academic Leader (No. 2019LJ27) and the Shanghai Medical Key Specialty (No. ZK2019B12)the Program for Outstanding Medical Academic Leader 2019LJ27the Shanghai Scientific and Technological Innovation Project 20ZR1452200the Scientific Research Project of Xuhui Provincial Commission of Health and Family Planning SHXH201706

Figures(9)

  • Graphene and graphene oxide possess unique structure and excellent properties, and have become popular potential materials in biology, information, energy and other fields in recent years. The high-quality nanocomposites were obtained by hybridizing graphene-based materials with functional molecules, polymers and nanoparticles. Besides the modification via weak interaction, covalent modification of graphene and graphene oxide via organic reaction can stably and effectively optimize the structure, enhance their performances and extend their applications. In this review, the diverse approaches of chemically covalent modification of graphene and graphene oxide are reviewed via esterification, acylation, Williamson reaction, Eschenmoser-Claisen[3, 3] σ rearrangement and click chemistry, and the future development trend is prospected.
  • 加载中
    1. [1]

      Peierls, R. E. Ann. Inst. Henri Poincare, Sect. A 1935, 5, 177.

    2. [2]

      Mermin, N. D. Phys. Rev. 1968, 176, 250.  doi: 10.1103/PhysRev.176.250

    3. [3]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Grigorieva, I. V.; Firsov, A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    4. [4]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.  doi: 10.1038/nmat1849

    5. [5]

      Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192.  doi: 10.1038/nature11458

    6. [6]

      Geim, A. K. Science 2009, 324, 1530.  doi: 10.1126/science.1158877

    7. [7]

      Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906.  doi: 10.1002/adma.201001068

    8. [8]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.  doi: 10.1126/science.1157996

    9. [9]

      Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukadaand, M.; Fukuyama, H. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 085421.  doi: 10.1103/PhysRevB.73.085421

    10. [10]

      Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.  doi: 10.1021/nl0731872

    11. [11]

      Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E H.; First, P. N.; de Heer, W. A. J. Phys. Chem. B 2004, 108, 19912.  doi: 10.1021/jp040650f

    12. [12]

      Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nat. Mater. 2007, 6, 652.  doi: 10.1038/nmat1967

    13. [13]

      Li, Z. Y.; Zhang, W. H.; Luo, Y.; Yang, J. L.; Hou, J. G. J. Am. Chem. Soc. 2009, 131, 6320.  doi: 10.1021/ja8094729

    14. [14]

      Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Carbon 2006, 44, 3342.  doi: 10.1016/j.carbon.2006.06.004

    15. [15]

      Titelman, G. I.; Gelman, V.; Bron, S.; Khalfin, R. L.; Cohen, Y.; Bianco-Peled, H. Carbon 2005, 43, 641.  doi: 10.1016/j.carbon.2004.10.035

    16. [16]

      Szabo, T.; Tombacz, E.; Illes, E.; Dekany, I. Carbon 2006, 44, 537.  doi: 10.1016/j.carbon.2005.08.005

    17. [17]

      He, H., Riedl, T., Lerf, A.; Klinowski, J. J. Phys. Chem. 1996, 100, 19954.  doi: 10.1021/jp961563t

    18. [18]

      Misra, S. K.; Kondaiah, P.; Bhattacharya, S.; Rao, C. N. R. Small 2012, 8, 131.  doi: 10.1002/smll.201101640

    19. [19]

      Song, Y.; Wei, W.; Qu, X. Adv. Mater. 2011, 23, 4215.  doi: 10.1002/adma.201101853

    20. [20]

      Li, J. L.; Bao, H. C.; Hou, X. L.; Sun, X.; Wang, G.; Gu, M. Angew. Chem., Int. Ed. 2012, 51, 1830.

    21. [21]

      Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Electro- analysis 2010, 22, 1027.

    22. [22]

      Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Chem. Mater. 2006, 18, 2740.  doi: 10.1021/cm060258+

    23. [23]

      Lerf, A.; He, H.; Riedl, T.; Forster, M.; Klinowski, J. Solid State Ionics 1997, 101~103, 857.

    24. [24]

      Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. Angew. Chem., Int. Ed. 2010, 49, 2154.  doi: 10.1002/anie.200905089

    25. [25]

      David, L.; Bhandavat, R.; Singh, G. ACS Nano 2014, 8, 1759.  doi: 10.1021/nn406156b

    26. [26]

      Shamsipur, M.; Molaei, K.; Molaabasi, F.; Hosseinkhani, S.; Taherpour, A.; Sarparast, M.; Moosavifard, S. E.; Barati, A. ACS Appl. Mater. Interfaces 2019, 11, 46077.  doi: 10.1021/acsami.9b14487

    27. [27]

      Cao, Y.; Lai, Z.; Feng, J.; Wu, P. J. Mater. Chem. 2011, 21, 9271.  doi: 10.1039/c1jm10420a

    28. [28]

      Xu, Z. Y.; Li, Y. J.; Shi, P.; Wang, B. J.; Huang, X. Y. Chin. J. Org. Chem. 2013, 33, 573(in Chinese).  doi: 10.6023/cjoc201211033

    29. [29]

      Dai, J.; Lang, M. D. Acta Chem. Sinica 2012, 70, 1237(in Chinese).

    30. [30]

      Xu, Z. Y.; Wang, S.; Li, Y. J.; Wang, M. W.; Shi, P.; Huang, X. Y. ACS Appl. Mater. Interfaces 2014, 6, 17268.  doi: 10.1021/am505308f

    31. [31]

      Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Ruoff, R. S. J. Mater. Chem. 2006, 16, 155.  doi: 10.1039/B512799H

    32. [32]

      Bai, H.; Li, C.; Wang, X.; Shi, G. Chem. Commun. 2010, 46, 2376.  doi: 10.1039/c000051e

    33. [33]

      Yoon, S.; In, I. J. Mater. Sci. 2011, 46, 1316.  doi: 10.1007/s10853-010-4917-2

    34. [34]

      Cano, M.; Khan, U.; Sainsbury, T.; Neill, A. O.; Wang, Z.; McGovern, I. T.; Maser, W. K.; Benito, A. M.; Coleman, J. N. Carbon 2013, 52, 363.  doi: 10.1016/j.carbon.2012.09.046

    35. [35]

      Vacchi, I. A.; Raya, J.; Bianco, A.; Ménard-Moyon, C. 2D Mater. 2018, 5, 035037.  doi: 10.1088/2053-1583/aac8a9

    36. [36]

      Ji, P.; Zhang, W.; Ai, S.; Zhang, Y.; Liu, J.; Liu, J.; He, P.; Li, Y. Nanotechnology 2019, 30, 115701.  doi: 10.1088/1361-6528/aaf8e4

    37. [37]

      Sydlik, S. A.; Swager, T. M. Adv. Funct. Mater. 2013, 23, 1873.  doi: 10.1002/adfm.201201954

    38. [38]

      Vacchi, I. A.; Spinato, C.; Raya, J.; Bianco, A.; Ménard-Moyon, C. Nanoscale 2016, 8, 13714.  doi: 10.1039/C6NR03846H

    39. [39]

      Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M. ACS Nano 2010, 4, 1949.  doi: 10.1021/nn901899j

    40. [40]

      Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. Nano Lett. 2009, 9, 3460.  doi: 10.1021/nl9016623

    41. [41]

      Deng, Y.; Li, Y. J.; Dai, J.; Lang, M. D.; Huang, X. Y. J. Polym. Sci. Part A:Polym. Chem. 2011, 49, 4747.  doi: 10.1002/pola.24919

    42. [42]

      Georgakilas, V.; Bourlinos, A. B.; Zboril, R.; Steriotis, T. A.; Dallas, P.; Stubos, A. K.; Trapalis, C. Chem. Commun. 2010, 46, 1766.  doi: 10.1039/b922081j

    43. [43]

      Vadukumpully, S.; Gupta, J.; Zhang, Y.; Xu, C. Q.; Valiyaveettil, S. Nanoscale 2011, 3, 303.  doi: 10.1039/C0NR00547A

    44. [44]

      Nemes-Incze, P.; Osváth, Z.; Kamarás, K.; Biro, L. P. Carbon 2008, 46, 1435.  doi: 10.1016/j.carbon.2008.06.022

    45. [45]

      Zhang, X.; Hou, L.; Cnossen, A.; Coleman, A. C.; Ivashenko, O.; Rudolf, P.; van Wees, B. J.; Browne, W. R.; Feringa, B. L. Chem.-Eur. J. 2011, 17, 8957.  doi: 10.1002/chem.201100980

    46. [46]

      Quintana, M.; Spyrou, K.; Grzelczak, M.; Browne, W. R.; Rudolf, P.; Prato, M. ACS Nano 2010, 4, 3527.  doi: 10.1021/nn100883p

    47. [47]

      Liu, L. H.; Lerner, M. M.; Yan, M. Nano Lett. 2010, 10, 3754.  doi: 10.1021/nl1024744

    48. [48]

      Zhong, X.; Jin, J.; Li, S.; Niu, Z.; Hu, W.; Li, R.; Ma, J. Chem. Commun. 2010, 46, 7340.  doi: 10.1039/c0cc02389b

    49. [49]

      Loh, K. P.; Bao, Q.; Anga, P. K. Yang, J. X. J. Mater. Chem. 2010, 20, 2277.  doi: 10.1039/b920539j

    50. [50]

      Salavagione, H. J.; Martínez, G.; Ellis, G. Macromol. Rapid. Commun. 2011, 32, 1771.  doi: 10.1002/marc.201100527

    51. [51]

      Liu, Y.; Zhou, J.; Zhang, X.; Liu, Z.; Wan, X.; Tian, J.; Wang, T.; Chen, Y. Carbon 2009, 47, 3113.  doi: 10.1016/j.carbon.2009.07.027

    52. [52]

      Yu, D.; Yang, Y.; Durstock, M.; Baek, J. B.; Dai, L. ACS Nano 2010, 4, 5633.  doi: 10.1021/nn101671t

    53. [53]

      Collins, W. R.; Lewandowski, W.; Schmois, E.; Walish, J.; Swager, T. M. Angew. Chem., Int. Ed. 2011, 50, 8848.  doi: 10.1002/anie.201101371

    54. [54]

      Palaganas, J. O.; Palaganas, N. B.; Ramos, L. J. I.; David, C. P. C. ACS Appl. Mater. Interfaces 2019, 11, 46034.  doi: 10.1021/acsami.9b12071

    55. [55]

      Yang, H.; Shan, C.; Li, F.; Han, D.; Zhang, Q.; Niu, L. Chem. Commun. 2009, 26, 3880.

    56. [56]

      Collins, W. R.; Schmois, E.; Swager, T. M. Chem. Commun. 2011, 47, 8790.  doi: 10.1039/c1cc12829a

    57. [57]

      Cao, Y.; Lai, Z.; Feng, J.; Wu, P. J. Mater. Chem. 2011, 21, 9271.  doi: 10.1039/c1jm10420a

    58. [58]

      Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 10876.  doi: 10.1021/ja803688x

    59. [59]

      Lee, S. H.; Kim, H. W.; Hwang, J. O.; Lee, W. J.; Kwon, J.; Bielawski, C. W.; Ruoff, R. S.; Kim, S. O. Angew. Chem., Int. Ed. 2010, 49, 10084.  doi: 10.1002/anie.201006240

    60. [60]

      Wang, D.; Ye, G.; Wang, X.; Wang, X. Adv. Mater. 2011, 23, 1122.  doi: 10.1002/adma.201003653

    61. [61]

      Fang, M.; Wang, K.; Lu, H. B.; Yang, Y. L.; Nutt, S. J. Mater. Chem. 2009, 19, 7098.  doi: 10.1039/b908220d

    62. [62]

      Lee, S. H.; Dreyer, D. R.; An, J.; Velamakanni, A.; Piner, R. D.; Park, S.; Zhu, Y.; Kim, S. O.; Bielawski, C. W.; Ruoff, R. S. Macromol. Rapid. Commun. 2010, 31, 281.  doi: 10.1002/marc.200900641

    63. [63]

      Liu, Z. Z.; Zhu, S. J.; Li, Y. J.; Li, Y. S.; Shi, P.; Huang, Z.; Huang, X. Y. Polym. Chem. 2015, 6, 311.  doi: 10.1039/C4PY00903G

    64. [64]

      Huang, Y.; Qin, Y.; Zhou, Y.; Niu, H.; Yu, Z. Z.; Dong, J. Y. Chem. Mater. 2010, 22, 4096.  doi: 10.1021/cm100998e

    65. [65]

      Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 44, 2004.

    66. [66]

      Becer, C. R.; Hoogenboom, R.; Schubert, U. S. Angew. Chem., Int. Ed. 2009, 48, 4900.  doi: 10.1002/anie.200900755

    67. [67]

      Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2004, 43, 3928.  doi: 10.1002/anie.200454078

    68. [68]

      Helms. B.; Mynar, J. L.; Hawker, C. J.; Frechet, J. M. J. Am. Chem. Soc. 2004, 126, 15020.  doi: 10.1021/ja044744e

    69. [69]

      John, E.; Moses, A.; Moorhouse, D. Chem. Rev. 2007, 36, 1249.

    70. [70]

      Zhang, T.; Zheng, C. H.; Ding, X. B.; Peng, Y. X. Prog. Chem. 2008, 20, 1090 (in Chinese).

    71. [71]

      He, H.; Gao, C. Chem. Mater. 2010, 22, 5054.  doi: 10.1021/cm101634k

    72. [72]

      Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M. S Small 2009, 5, 82.  doi: 10.1002/smll.200800988

    73. [73]

      Pan, Y.; Bao, H.; Sahoo, N. G.; Wu, T.; Li, L. Adv. Funct. Mater. 2011, 21, 2754.  doi: 10.1002/adfm.201100078

    74. [74]

      Imani, R.; Prakash, S.; Vali, H.; Faghihi, S. Biomater. Sci. 2018, 6, 1636.  doi: 10.1039/C8BM00058A

    75. [75]

      Guo, S.; Nishina, Y.; Bianco, A.; Cécilia, M.-M. Angew. Chem., Int. Ed. 2020, 59, 1542.  doi: 10.1002/anie.201913461

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    9. [9]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    10. [10]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    15. [15]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    20. [20]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

Metrics
  • PDF Downloads(42)
  • Abstract views(2902)
  • HTML views(618)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return