A Benzothiazole-Based Ratiometric Fluorescent Probe for Highly Selective Detection of Homocysteine and Its Bioimaging Application
- Corresponding author: Shen Youming, ymshen79@163.com Gu Biao, biaogu@hynu.edu.cn
	            Citation:
	            
		            Shen Youming, Gu Biao, Liu Xin, Tang Yucai, Li Haitao. A Benzothiazole-Based Ratiometric Fluorescent Probe for Highly Selective Detection of Homocysteine and Its Bioimaging Application[J]. Chinese Journal of Organic Chemistry,
							;2020, 40(8): 2442-2449.
						
							doi:
								10.6023/cjoc202004009
						
					
				
					 
				
	        
 
	                
				Bu, L.; Chen, J.; Wei, X.; Li, X.; Agren H.; Xie, Y. Dyes Pigm. 2017, 136, 724.
												 doi: 10.1016/j.dyepig.2016.09.032
											
										
				Yang, X.; Guo, Y.; Strongin, R. M. Angew. Chem., Int. Ed. 2011, 50, 10690.
												 doi: 10.1002/anie.201103759
											
										
				Lee, P. T.; Lowinsohn, D.; Compton, R. G. Analyst 2014, 139, 3755.
												 doi: 10.1039/C4AN00372A
											
										
				Espina, J. G.; Montes-Bayón, M.; Blanco-González, E.; Sanz-Medel, A. Anal. Bioanal. Chem. 2015, 407, 7899.
												 doi: 10.1007/s00216-015-8956-z
											
										
				Huo, F. J.; Sun, Y. Q.; Su, J.; Chao, J. B.; Zhi, H. J.; Yin, C. X. Org. Lett. 2009, 11, 4918.
												 doi: 10.1021/ol901951h
											
										
				Inoue, T.; Kirchhoff, J. R. Anal. Chem. 2002, 74, 1349.
												 doi: 10.1021/ac0108515
											
										
				Kamińska, A.; Olejarz, P.; Borowczyk, K.; Głowacki, R.; Chwatko, G. J. Sep. Sci. 2018, 41, 3241.
												 doi: 10.1002/jssc.201800381
											
										
				Jiao, X.; Li, Y.; Niu, J.; Xie, X.; Wang, X.; Tang, B. Anal. Chem. 2018, 90, 533.
												 doi: 10.1021/acs.analchem.7b04234
											
										
				Wang, R. X.; Lai, X. J.; Qiu, G. S.; Liu, J. B. Chin. J. Org. Chem. 2019, 39, 952(in Chinese).
										 
				Yue, Y.; Huo, F.; Li, X.; Wen, Y.; Yi, T.; Salamanca, J.; Escobedo, J. O.; Strongin, R. M.; Yin, C. Org. Lett. 2017, 19, 82.
												 doi: 10.1021/acs.orglett.6b03357
											
										
				Yue, P.; Yang, X.; Ning, P.; Xi, X.; Yu, H.; Feng, Y.; Shao, R.; Meng, X. Talanta 2018, 178, 24.
												 doi: 10.1016/j.talanta.2017.08.085
											
										
				Liang, Q.; Zhang, Y. J.; Zeng, M.; Guan, L.; Xiao, Y. Y.; Xiao, F. Toxicol. Res. 2018, 7, 521.
												 doi: 10.1039/C8TX00029H
											
										
				Cheng, T.; Huang, W.; Gao, D.; Yang, Z.; Zhang, C.; Zhang, H.; Zhang, J.; Li, H.; Yang, X. F. Anal. Chem. 2019, 91, 10894.
												 doi: 10.1021/acs.analchem.9b02814
											
										
				Cheng, X. H.; Xu, K.; Qu, S. H.; Ruan, Z. J. Chin. J. Org. Chem. 2019, 39, 2835(in Chinese).
										 
				Zhou, T. T.; Yang, Y. T.; Zhou, K. Y.; Xu, W. Z.; Li, W. Chin. J. Org. Chem. 2019, 39, 3498(in Chinese).
										 
				Yan, P. P.; Wang, T.; Zhang, D.; Ma, X. X. Chin. J. Org. Chem. 2019, 39, 916(in Chinese).
										 
				Qiu, X.; Jiao, X.; Liu, C.; Zheng, D.; Huang, K.; Wang, Q.; He, S.; Zhao, L.; Zeng, X. Dyes Pigm. 2017, 140, 212.
												 doi: 10.1016/j.dyepig.2017.01.047
											
										
				Lee, H. Y.; Choi, Y. P.; Kim, S.; Yoon, T.; Guo, Z.; Lee, S.; Swamy, K. M. K.; Kim, G.; Lee, J. Y.; Shin, I.; Yoon, J. Chem. Commun. 2014, 50, 6967.
												 doi: 10.1039/c4cc00243a
											
										
				Barve, A.; Lowry, M.; Escobedo, J. O.; Huynh, K. T.; Hakuna, L.; Strongin, R. M. Chem. Commun. 2014, 50, 8219.
												 doi: 10.1039/C4CC03527E
											
										
				Zhang, Y. J.; Ma, Y.; Liang, N. J.; Liang, Y. H.; Lu, C.; Xiao, F. Ecotoxicol. Environ. Saf. 2019, 186, 109749.
												 doi: 10.1016/j.ecoenv.2019.109749
											
										
				Zhao, N.; Gong, Q.; Zhang, R. X.; Yang, J.; Huang, Z. Y.; Li, N.; Tang, B. Z. J. Mater. Chem. C 2015, 3, 8397.
												 doi: 10.1039/C5TC01159K
											
										
				Sedgwick, A. C.; Wu, L.; Han, H. H.; Bull, S. D.; He, X. P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Chem. Soc. Rev. 2018, 47, 8842.
												 doi: 10.1039/C8CS00185E
											
										
				Meng, X.; Ye, W.; Wang, S.; Feng, Y.; Chen, M.; Zhu, M.; Guo, Q. Sens. Actuators, B 2014, 201, 520.
												 doi: 10.1016/j.snb.2014.05.042
											
										
				Lee, K. S.; Kim, T. K.; Lee, J. H.; Kim, H. J.; Hong, J. I. Chem. Commun. 2008, 6173.
										
				Gu, B.; Huang, L.; Su, W.; Duan, X.; Li, H.; Yao, S. Anal. Chim. Acta 2017, 954, 97.
												 doi: 10.1016/j.aca.2016.11.044
											
										
				Chang, I. J.; Hwang, K. S.; Chang, S. K. Dyes Pigm. 2017, 137, 69.
												 doi: 10.1016/j.dyepig.2016.09.058
											
										
				Yang, L.; Su, Y.; Geng, Y.; Zhang, Y.; Ren, X.; He, L.; Song, X. ACS Sens. 2018, 3, 1863.
												 doi: 10.1021/acssensors.8b00685
											
										
				Wang, Y. W.; Liu, S. B.; Ling, W. J.; Peng, Y. Chem. Commun. 2016, 52, 827.
												 doi: 10.1039/C5CC07886E
											
										
				Huang, Z. J.; Ding, S. S.; Yu, D. H.; Huang, F. H.; Feng, G. Q. Chem. Commun. 2014, 50, 9185.
												 doi: 10.1039/C4CC03818E
											
										
 
						
						
						
	                Lei ZHANG , Cheng HE , Yang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405
Wei GAO , Meiqi SONG , Xuan REN , Jianliang BAI , Jing SU , Jianlong MA , Zhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Yuting DU , Jing YUAN , Peiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461
Pengli GUAN , Renhu BAI , Xiuling SUN , Bin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058
Yanxi LIU , Mengjia XU , Haonan CHEN , Quan LIU , Yuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423
Zhoupeng Zheng , Shengyi Gong , Qianhua Li , Shiya Zhang , Guoqiang Feng . Lipid droplets and gallbladder targeted fluorescence probe for ratiometric NO imaging in gallstones disease models. Chinese Chemical Letters, 2025, 36(5): 110191-. doi: 10.1016/j.cclet.2024.110191
Baoli Yin , Xinlin Liu , Zhe Li , Zhifei Ye , Youjuan Wang , Xia Yin , Sulai Liu , Guosheng Song , Shuangyan Huan , Xiao-Bing Zhang . Ratiometric NIR-Ⅱ fluorescent organic nanoprobe for imaging and monitoring tumor-activated photodynamic therapy. Chinese Chemical Letters, 2025, 36(5): 110119-. doi: 10.1016/j.cclet.2024.110119
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
Qian Pang , Fangjun Huo , Yongkang Yue , Caixia Yin . ONOO− and viscosity dual-response fluorescent probe for arthritis imaging in vivo. Chinese Chemical Letters, 2025, 36(9): 110713-. doi: 10.1016/j.cclet.2024.110713
Sixin Ai , Wenxiu Li , Huayong Zhu , Yang Wan , Weiying Lin . Viscosity-responsive signal amplification dual-modal probe triggered by cysteine/homocysteine for monitoring diabetic liver damages and repair processes. Chinese Chemical Letters, 2025, 36(3): 109904-. doi: 10.1016/j.cclet.2024.109904
Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020
Xianghan Zhang , Yuan Qin , Huaicong Zhang , Yutian Cao , Haixing Zhu , Yingdi Tang , Zimeng Ma , Zehua Li , Jialin Zhou , Qunyan Dong , Peng Yang , Yuqiong Xia , Zhongliang Wang . An aggregation-independent and rotor-specific TPE-cyanine probe for in vivo near-infrared fluorescent imaging. Chinese Chemical Letters, 2025, 36(9): 110715-. doi: 10.1016/j.cclet.2024.110715
Wanxin Li , Wenxing Gao , Mengyao Wen , Zecheng He , Li Shang . Controllable synthesis of selenolate ligand-costabilized water-soluble near-infrared fluorescent gold nanoclusters for cell imaging. Chinese Chemical Letters, 2025, 36(10): 110803-. doi: 10.1016/j.cclet.2024.110803
Han-Min Wang , Yan-Chen Li , Lu-Lu Sun , Ming-Ye Tang , Jia Liu , Jiahao Cai , Lei Dong , Jia Li , Yi Zang , Hai-Hao Han , Xiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603
Yijian Zhao , Jvzhe Li , Yunyi Shi , Jie Hu , Meiyi Liu , Yao Shen , Xinglin Hou , Qiuyue Wang , Qi Wang , Zhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132
Fangbing Wang , Qiankun Zeng , Jing Ren , Min Zhang , Guoyue Shi . A membrane-based plasma separator coupled with ratiometric fluorescent sensor for biochemical analysis in whole blood. Chinese Chemical Letters, 2025, 36(7): 110494-. doi: 10.1016/j.cclet.2024.110494
Mingyue Luo , Kehui Zhang , Honghong Rao , Jianying Li , Xin Xue , Panpan Sun , Xiaoquan Lu , Zhonghua Xue . A simplified ratiometric fluorescent sensing strategy for enhanced detection of alkaline phosphatase employing Prussian blue nanozymes and commercially available chromogen. Chinese Chemical Letters, 2025, 36(9): 110703-. doi: 10.1016/j.cclet.2024.110703
(A) λex=385 nm; (B) λex=420 nm. Inset: the color changes of BA in the absent and present of Hcy/Cys/GSH under the observation of 365 nm UV light
(1) BA only; (2) Hcy; (3) Cys; (4) GSH; (5) Ser; (6) Gly; (7) Ala; (8) Leu; (9) Val; (10) Arg; (11) Asn; (12) Vc; (13)NO3-; (14) CH3COO-; (15) I-; (16) SCN-; (17)H2PO4-; (18) Cl-; (19)NO2-; (20) Al3+; (21) K+; (22) Fe2+; (23) Ca2+; (24) Zn2+; (25) Fe3+; (26) Cu2+; (27) Na+; (28) Ni2+ (29) H2O2; (30) ClO-; (31) •OH; (32) O2-; (33) S2-; (34)SO32-; (35) S2O32-; (36) S2O42-; (37) S2O52-; (38) NO. λex=420 nm
The cell viability was observed via MTT assay
Cells A1~A4 were stained with BA (10 μmol/L) for 45 min. Cells B1~B4 were precultured with NEM (500 μmol/L) for 30 min and then stained with BA (10 μmol/L) for 45 min. Cells C1~C4 were precultured with NEM (0.5 mmol/L) for 30 min, incubated with Hcy (100 μmol/L) for 30 min and then stained with BA (10 μmol/L) for 45 min. A1, B1 and C1: bright field; A2, B2 and C2: blue channel (415~490 nm); A3, B3 and C3: green channel (520~600 nm); A4, B4 and C4: overlay of blue, green channel and bright field. Scale bar=20 μmol/L