Citation: Yan Zi'ang, Zou Lei, Ma Xiang. Recent Advances in Pure Organic Luminescent Supramolecular Materials[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1814-1822. doi: 10.6023/cjoc202004003 shu

Recent Advances in Pure Organic Luminescent Supramolecular Materials



  • Author Bio: Yan, Zi'ang was born in 1999. Now he is pursuing his bachelor’s degree in applied chemistry. His current research interests are focused on pure organic phosphorescent materials.
    Dr. Zou, Lei received her bachelor from Soochow University in 1997 and PhD from Fudan University under the supervision of Prof. Zhu, Daoben in 2003. She has been working in chemistry at East China University of Science and Technology since 2007, where she mainly focuses on photochromic materials based on dyes.

  • Corresponding author: Ma Xiang, maxiang@ecust.edu.cn
  • Received Date: 2 April 2020
    Revised Date: 1 May 2020
    Available Online: 7 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21722603, 21871083)Project supported by the National Natural Science Foundation of China 21722603Project supported by the National Natural Science Foundation of China 21871083

Figures(12)

  • Pure organic luminescent supramolecular materials with either phosphorescence or fluorescence emission have become a hot research topic due to their low toxity, facile preparation and wide applications. In recent years, our group has designed several novel luminescent macromolecules, achieving tunable multi-color emission. For the construction of phosphorescent materials, heavy atoms such as bromine and iodine as well as other hetroatoms with lone pair electrons like oxygen were employed to facilitate the intersystem crossing (ISC) process of the luminophores while rigid environments were provided via host-guest interactions and polymerization to restrict molecular motions, which results in reduced nonradiative decay. Moreover, noncovalent interactions are stimuli responsive because of their dynamic nature. Therefore, host-guest interactions, along with other noncovalent interactions including hydrophobic effects, π-π stacking and multiple hydrogen bonding, were also used for adjusting the intensities and wavelengths of phosphorescence or fluorescence, achieving diverse luminescence properties that the luminophore itself does not possess. This account summarizes the above advances and proposes possible directions for further research, like not only improving quantum yields but also expanding the range of emission wavelength of organic phosphorescent materials and developing luminescent materials that can intelligently respond to external stimuli.
  • 加载中
    1. [1]

      (a) Gao, R.; Mei, X.; Yan, D.; Liang, R.; Wei, M. Nat. Commun. 2018, 9, 2798.
      (b) Miao, Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H.; Liu, X.; Jokerst, J. V.; Pu, K. Nat. Biotechnol. 2017, 35, 1102.
      (c) Zhen, X.; Tao, Y.; An, Z.; Chen, P.; Xu, C.; Chen, R.; Huang, W.; Pu, K. Adv. Mater. 2017, 29, 1606665.

    2. [2]

      (a) Zhou, Y.; Qin, W.; Du, C.; Gao, H.; Zhu, F.; Liang, G. Angew. Chem., Int. Ed. 2019, 131, 12230.
      (b) Kim, H. N.; Guo, Z. Q.; Zhu, W. H.; Yoon, J.; Tian, H. Chem. Soc. Rev. 2011, 40, 79.

    3. [3]

      Ma, X.; Zhang, J.; Cao, J.; Yao, X.; Cao, T.; Gong, Y.; Zhao, C.; Tian, H. Chem. Sci. 2016, 7, 4582.  doi: 10.1039/C6SC00769D

    4. [4]

      Jiang, K.; Zhang, L.; Lu, J.; Xu, C.; Cai, C. Angew. Chem., Int. Ed. 2016, 55, 7231.  doi: 10.1002/anie.201602445

    5. [5]

      Lambert, J. S.; Li, H. C.; Wang, Q.; Liu, X. X.; Olivier, J.; Joë lle, R. B.; Liao, L. S.; Jiang, Z. Q.; Cyril, P. Angew Chem., Int. Ed. 2019, 58, 3848.  doi: 10.1002/anie.201813604

    6. [6]

      (a) Xiong, Q.; Xu, C.; Jiao, N.; Ma, X.; Zhang, Y.; Zhang, S. Chin. Chem. Lett. 2019, 30, 1387.
      (b) Qu, G.; Zhang, Y.; Ma, X. Chin. Chem. Lett. 2019, 30, 1809.
      (c) Wang, C.; Jiang, T.; Ma, X. Chin. Chem. Lett. 2020, DOI: 10.1016/j.cclet.2020.03.021.
      (d)Xu,C.;Xu,L.;Ma,X.Chin.Chem.Lett.2018,29,970.
      (e)Wang,S.;Wang,F.;Li,C.;Li,T.;Cao,D.;Ma,X.Sci.China:Chem.2018,61,1301.
      (f)Liu,X.;Ma,X.J.EastChinaUniv.Sci.Technol.(Nat.Sci.Ed.)2019,45,517(inChinese).(刘秀军,马骧,华东理工大学学报(自然科学版),2019,45,517.)
      (g)Wang,H.;Shi,H.;Ye,W.;Yao,X.;Wang,Q.;Dong,C.;Jia,W.;Ma,H.;Cai,S.;Huang,K.;Fu,L.;Zhang,Y.;Zhi,J.;Gu,L.;Zhao,Y.;An,Z.;Huang,W.Angew.Chem.,Int.Ed.2019,58,18776.
      (h)Tian,H.;Zhang,T.;Ma,X.;Wu,H.;Zhu,L.;Zhao,Y.Angew.Chem.,Int.Ed.2019,59,11206.
      (i)Li,X.;Li,C.;Wang,S.;Dong,H.;Ma,X.;Cao,D.DyesPigm.2017,142,481.(j)Wang,S.;Xu,M.;Huang,K.;Zhi,J.;Sun,C.;Wang,K.;Zhou,Q.;Gao,L.;Jia,Q.;Shi,H.;An,Z.;Li,P.;Huang,W.Sci.China:Chem.2019,63,316.
      (k)He,Z.;Cai,X.;Wang,Z.;Chen,D.;Li,Y.;Zhao,H.;Liu,K.;Cao,Y.;Su,S.J.Sci.China:Chem.2018,61,677.
      (l)Ke,K.;Chen,J.X.;Zhang,M.;Wang,K.;Shi,Y.Z.;Lin,H.;Zheng,C.J.;Tao,S.L.;Zhang,X.H.Sci.China:Chem.2018,62,719.

    7. [7]

      Gan, N.; Shi, H.; An, Z.; Huang, Wei. Adv. Funct. Mater. 2018, 28, 1802657.  doi: 10.1002/adfm.201802657

    8. [8]

      (a) Chen, H.; Yao, X.; Ma, X.; Tian, H. Adv. Opt. Mater. 2016, 4, 1397.
      (b) Ma, X.; Xu, C.; Wang, J.; Tian, H. Angew. Chem., Int. Ed. 2018, 57, 10854.
      (c) Wang, D.; Yan, Z.; Shi, M.; Dai, J.; Chai, Q.; Gui, H.; Zhang, Y.; Ma, X. Adv. Opt. Mater. 2019, 7, 1901277.
      (d) Li, D.; Lu, F.; Wang, J.; Hu, W.; Cao, X. M.; Ma, X. J. Am. Chem. Soc. 2018, 1916.
      (e) Zhao, C. X.; Jin, Y. H.; Wang, J.; Cao, X.; Ma, X. Chem. Commun. 2019, 55, 5355.
      (f) Zhang, T.; Chen, H.; Ma, X.; Tian, H. Ind. Eng. Chem. Res. 2017, 56, 3123

    9. [9]

      (a) Jiang, T.; Wang, X.; Wang, J.; Hu, G.; Ma, X. ACS Appl. Mater. Interfaces 2019, 11, 14399.
      (b) Li, D.; Hu, W.; Wang, J.; Zhang, Q.; Cao, X. M.; Ma, X.; Tian, H. Chem. Sci. 2018, 9, 5709.
      (c) Wang, J.; Yao, X.; Liu, Y.; Zhou, H.; Chen, W.; Sun, G.; Su, J.; Ma, X.; Tian, H. Adv. Opt. Mater. 2018, 6, 1800074.
      (d) Wang S.; Li, T.; Zhang, X.; Ma, L.; Li, P.; Yao, X.; Cao, D.; Ma, X. ChemPhotoChem 2019, 3, 568.
      (e) Zhang, Q. W.; Li, D.; Li, X.; Paul, W.; Jasmin, M.; Ma, X.; Ågren, H.; Tian, H. J. Am. Chem. Soc. 2016, 138, 13541.
      (f) Wang, J.; Huang, Z.; Ma, X.; Tian, H. Angew. Chem., Int. Ed. 2020, 59, 9928..
      (g) Zhang, T.; Chen, H.; Ma, X.; Tian, H. Ind. Eng. Chem. Res. 2017, 56, 3123.
      (h) Gu, F.; Ding, B.; Ma, X.; Tian, H. Eng. Chem. Res. 2020, 59, 1578.
      (i) Gu, F.; Zhang, C.; Ma, X. Macromol. Rapid. Commun. 2019, 40, 1800751. (j) Ma, L.; Wang, S.; Li, C.; Cao, D.; Li, T.; Ma, X. Chem. Commun. 2018, 54, 2405.
      (k) Zhang, C.; Yao, X.; Wang, J.; Ma, X. Polym. Chem. 2017, 8, 4835.

    10. [10]

      (a) Chen, H.; Ma, X.; Wu, S.; Tian, H. Angew. Chem., Int. Ed. 2014, 53, 14149.
      (b) Zhang, T.; Ma, X.; Tian, H. Chem. Sci. 2020, 11, 482.

    11. [11]

      Yuan, W.; Shen, X.; Zhao, H.; Lam, J.; Tang, L.; Lu, P.; Wang, C.; Liu, Y.; Wang, Z.; Zheng, Q.; Sun, J.; Ma, Y.; Tang, B. J. Phys. Chem. C 2010, 114, 6090.
      (b) Gong, Y.; Chen, G.; Peng, Q.; Yuan, W.; Xie, Y.; Li, S.; Zhang, Y.; Tang, B. Adv. Mater. 2015, 27, 6195.
      (c) Luo, W.; Zhang, Y.; Gong, Y.; Zhou, Q.; Zhang, Y.; Yuan, W. Chin. Chem. Lett. 2018, 29, 1533.
      (d) Bian, L. F.; Shi, H. F.; Wang, X.; Ling, K.; Ma, L.; Li, M.; Cheng, Z.; Ma, C.; Cai, S.; Gan, N.; Xu, X.; An, Z.; Huang, W. J. Am. Chem. Soc. 2018, 140, 10734.
      (e) Cai, S.; Shi, H.; Li, J.; Gu, L.; Ni, Y.; Cheng, Z.; Wang, S.; Xiong, W. W.; Li, L.; An, Z.; Huang, W. Adv. Mater. 2017, 29, 1701244.
      (f) Cai, S.; Shi, H.; Tian, D.; Ma, H.; Cheng, Z.; Wu, Q.; Gu, M.; Huang, L.; An, Z.; Peng, Q.; Huang, W. Adv. Funct. Mater. 2018, 28, 1705045.
      (g) Chen, Z.; Shi, H.; Ma, H.; Bian, L.; Wu, Q.; Gu, L.; Cai, S.; Wang, X.; Xiong, W. W.; An, Z.; Huang, W. Angew. Chem., Int. Ed. 2017, 57, 678.
      (h) Li, C.; Tang, X.; Zhang, L.; Li, C.; Liu, Z.; Bo, Z.; Dong, Y.; Tian, Y. H.; Dong, Y.; Tang, B. Adv. Opt. Mater. 2015, 3, 1184

    12. [12]

      (a) Fang, M. M.; Yang, J.; Li, Z. Chin. J. Polym. Sci. 2019, 37, 383.
      (b) Gan, N.; Shi, H.; An, Z.; Huang, W. Adv. Funct. Mater. 2018, 28, 1802657.

    13. [13]

      Zhang, Z.; Wu, Y. S., Tang, K. C.; Chen, C. L.; Ho, J. W.; Su, J.; Tian, H.; Chou, P. T. J. Am. Chem. Soc. 2015, 137, 8509.  doi: 10.1021/jacs.5b03491

    14. [14]

      (a) Gu, X.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Biomaterials 2017, 146, 115.
      (b) Li, C.; Wu, T.; Hong, C.; Zhang, G.; Liu, S. Angew. Chem., Int. Ed. 2012, 51, 455.
      (c) Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2016, 56, 880.

    15. [15]

      Gong, Y. F.; Chen, H.; Ma, X.; Tian, H. ChemPhysChem 2016, 17, 1934.  doi: 10.1002/cphc.201500901

  • 加载中
    1. [1]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    2. [2]

      Xinguo MaoShuo ZhangQiang ShiHua ChengLeyong Wang . Macrocyclic host molecules: Rising as a promising supramolecular material. Chinese Chemical Letters, 2025, 36(6): 110950-. doi: 10.1016/j.cclet.2025.110950

    3. [3]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    4. [4]

      Zeyin ChenJiaju ShiYusheng ZhouPeng ZhangGuodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629

    5. [5]

      Yu-Jie LongXiao-Ni HanYing HanChuan-Feng Chen . Recent advances in supramolecular luminescent materials based on macrocyclic arenes. Chinese Chemical Letters, 2025, 36(6): 110600-. doi: 10.1016/j.cclet.2024.110600

    6. [6]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    7. [7]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    8. [8]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    9. [9]

      Hong YaoFeixiang YangJianpeng HuWenyu CaoShuning QinTai-Bao WeiBingbing ShiQi Lin . Ultralong room temperature phosphorescence and broad color-tunability persistent luminescence via new strategy. Chinese Chemical Letters, 2025, 36(6): 110375-. doi: 10.1016/j.cclet.2024.110375

    10. [10]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    11. [11]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    12. [12]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    13. [13]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    14. [14]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    15. [15]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    16. [16]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    17. [17]

      Renyuan WangLei KeHouxiang WangYueheng TaoYujie CuiPeipei ZhangMinjie ShiXingbin Yan . Facile synthesis of phenazine-conjugated polymer material with extraordinary proton-storage redox capability. Chinese Chemical Letters, 2025, 36(5): 109920-. doi: 10.1016/j.cclet.2024.109920

    18. [18]

      Hao SunXiaoxue LiBaoyu WuKai ZhuYinyi GaoTianzeng BaoHongbin WuDianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041

    19. [19]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    20. [20]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

Metrics
  • PDF Downloads(22)
  • Abstract views(1361)
  • HTML views(231)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return