Transition Metal-Catalyzed C-H Activation via Imine-Based Transient Directing Group Strategy
- Corresponding author: Shi Bingfeng, bfshi@zju.edu.cn
Citation:
Wu Yongjie, Shi Bingfeng. Transition Metal-Catalyzed C-H Activation via Imine-Based Transient Directing Group Strategy[J]. Chinese Journal of Organic Chemistry,
;2020, 40(11): 3517-3535.
doi:
10.6023/cjoc202003057
(a) Godula, K.; Sames, D. Science 2006, 312, 67.
(b) Bergman, R. G. Nature 2007, 446, 391.
(c) Ellman, J. A.; Ackermann, L.; Shi, B. F. J. Org. Chem. 2019, 84, 12701.
(a) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Org. Chem. Front. 2014, 1, 843.
(b) Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603.
(c) Zhang, Q.; Shi, B.-F. Chin. J. Chem. 2019, 37, 647.
(d) Rej, S.; Ano, Y.; Chatani, N. Chem. Rev. 2020, 120, 1788.
For selected examples of phosphites as transient directing groups, see:
(a) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew. Chem., Int. Ed. 2003, 42, 112.
(b) Bedford, R. B.; Limmert, M. E. J. Org. Chem. 2003, 68, 8669.
(c) Bedford, R. B.; Betham, M.; Caffyn, A. J.; Charmant, J. P.; Lewis-Alleyne, L. C.; Long, P. D.; Polo-Ceron, D.; Prashar, S. Chem. Commun. 2008, 990.
(d) Bedford, R. B.; Haddow, M. F.; Webster, R. L.; Mitchell, C. J. Org. Biomol. Chem. 2009, 7, 3119.
(e) Carrion, M. C.; Cole-Hamilton, D. J. Chem. Commun. 2006, 4527.
(f) Lewis, J. C.; Wu, J.; Bergman, R. G.; Ellman, J. A. Organometallics 2005, 24, 5737.
(g) Oi, S.; Watanabe, S.-I.; Fukita, S.; Inoue, Y. Tetrahedron Lett. 2003, 44, 8665.
(h) Yang, J. F.; Wang, R. H.; Wang, Y. X.; Yao, W. W.; Liu, Q. S.; Ye, M. Angew. Chem., Int. Ed. 2016, 55, 14116.
(i) Liu, Q.-S.; Wang, D.-Y.; Yang, J.-F.; Ma, Z.-Y.; Ye, M. Tetrahedron 2017, 73, 3591.
Mo, F.; Dong, G. Science 2014, 345, 68.
doi: 10.1126/science.1254465
For selected examples of transient enamine directing groups, see:
(a) Wang, Z.; Reinus, B. J.; Dong, G. J. Am. Chem. Soc. 2012, 134, 13954.
(b) Mo, F.; Lim, H. N.; Dong, G. J. Am. Chem. Soc. 2015, 137, 15518.
(c) Xu, Y.; Young, M. C.; Dong, G. J. Am. Chem. Soc. 2017, 139, 5716.
(d) Lim, H. N.; Dong, G. Angew. Chem., Int. Ed. 2015, 54, 15294.
(e) Xu, Y.; Su, T.; Huang, Z.; Dong, G. Angew. Chem., Int. Ed. 2016, 55, 2559.
Jun, C.-H.; Lee, H.; Hong, J.-B. J. Org. Chem. 1997, 62, 1200.
doi: 10.1021/jo961887d
Jun, C.-H.; Lee, D.-Y.; Hong, J.-B. Tetrahedron Lett. 1997, 38, 6673.
doi: 10.1016/S0040-4039(97)01562-1
Vautravers, N. R.; Regent, D. D.; Breit, B. Chem. Commun. 2011, 47, 6635.
doi: 10.1039/c1cc10683j
Beletskiy, E. V.; Sudheer, C.; Douglas, C. J. J. Org. Chem. 2012, 77, 5884.
doi: 10.1021/jo300779q
Jun, C.-H.; Moon, C. W.; Hong, J.-B.; Lim, S.-G.; Chung, K.-Y.; Kim, Y.-H. Chem.-Eur. J. 2002, 8, 485.
doi: 10.1002/1521-3765(20020118)8:2<485::AID-CHEM485>3.0.CO;2-1
Kuninobu, Y.; Nishina, Y.; Shouho, M.; Takai, K. Angew. Chem., Int. Ed. 2006, 45, 2766.
doi: 10.1002/anie.200503627
Chen, S.; Yu, J.; Jiang, Y.; Chen, F.; Cheng, J. Org. Lett. 2013, 15, 4754.
doi: 10.1021/ol4021145
Tan, P. W.; Juwaini, N. A. B.; Seayad, J. Org. Lett. 2013, 15, 5166.
doi: 10.1021/ol402145m
Li, G.; Jiang, J.; Xie, H.; Wang, J. Chem.-Eur. J. 2019, 25, 4688.
doi: 10.1002/chem.201900762
Liu, X. H.; Park, H.; Hu, J. H.; Hu, Y.; Zhang, Q. L.; Wang, B. L.; Sun, B.; Yeung, K. S.; Zhang, F. L.; Yu, J. Q. J. Am. Chem. Soc. 2017, 139, 888.
doi: 10.1021/jacs.6b11188
Chen, X. Y.; Ozturk, S.; Sorensen, E. J. Org. Lett. 2017, 19, 1140.
doi: 10.1021/acs.orglett.7b00161
Xu, J.; Liu, Y.; Wang, Y.; Li, Y.; Xu, X.; Jin, Z. Org. Lett. 2017, 19, 1562.
doi: 10.1021/acs.orglett.7b00363
Hu, W.; Zheng, Q.; Sun, S.; Cheng, J. Chem. Commun. 2017, 53, 6263.
doi: 10.1039/C7CC03006A
Li, B.; Seth, K.; Niu, B.; Pan, L.; Yang, H.; Ge, H. Angew. Chem., Int. Ed. 2018, 57, 3401.
doi: 10.1002/anie.201713357
Wang, D. Y.; Guo, S. H.; Pan, G. F.; Zhu, X. Q.; Gao, Y. R.; Wang, Y. Q. Org. Lett. 2018, 20, 1794.
doi: 10.1021/acs.orglett.8b00292
Wang, Y. F.; Xu, W. G.; Sun, B.; Yu, Q. Q.; Li, T. J.; Zhang, F. L. J. Org. Chem. 2019, 84, 13104.
doi: 10.1021/acs.joc.9b02139
Chen, X. Y.; Sorensen, E. J. J. Am. Chem. Soc. 2018, 140, 2789.
doi: 10.1021/jacs.8b00048
(a) Li, F.; Zhou, Y.; Yang, H.; Liu, D.; Sun, B.; Zhang, F. L. Org. Lett. 2018, 20, 146.
(b) Zhan, B.-B.; Li, Y.; Xu, J.-W.; Nie, X.-L.; Fan, J.; Jin, L.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 5858.
(a) Baudoin, O. Eur. J. Org. Chem. 2005, 4223.
(b) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384.
(c) Wencel-Delord, J.; Panossian, A; Leroux, F. R.; Colobert, F. Chem. Soc. Rev. 2015, 44, 3418.
(d) Ma, G.; Sibi, M. P. Chem.-Eur. J. 2015, 21, 11644.
(e) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Chem. Rev. 2015, 115, 11239.
(f) Mori, K.; Itakura, T.; Akiyama, T. Angew. Chem., Int. Ed. 2016, 55, 11642.
(g) Xu, C.; Zheng, H.; Hu, B.; Liu, X.; Liu, L.; Feng, X. Chem. Commun. 2017, 53, 9741.
(h) Zilate, B.; Castrogiovanni, A.; Sparr, C. ACS Catal. 2018, 8, 2981.
(i) Liao, G.; Zhou, T.; Yao, Q.-J.; Shi, B.-F. Chem. Commun. 2019, 55, 8514.
(a) Yao, Q. J.; Zhang, S.; Zhan, B. B.; Shi, B. F. Angew. Chem., Int. Ed. 2017, 56, 6617.
(b) Fan, J.; Yao, Q. J.; Liu, Y. H.; Liao, G.; Zhang, S.; Shi, B. F. Org. Lett. 2019, 21, 3352.
(a) Wang, Q.; Gu, Q.; You, S.-L. Angew. Chem., Int. Ed. 2019, 58, 6818.
(b) Chen, J.; Liu, Y. E.; Gong, X.; Shi, L.; Zhao, B. Chin. J. Chem. 2019, 37, 103.
(c) Gong, L.-Z. Sci. China: Chem. 2019, 62, 3.
(d) Li, S.; Chen, X.-Y.; Enders, D. Chem 2018, 4, 2026
(a) Liao, G.; Yao, Q. J.; Zhang, Z. Z.; Wu, Y. J.; Huang, D. Y.; Shi, B. F. Angew. Chem., Int. Ed. 2018, 57, 3661.
(b) Liao, G.; Li, B.; Chen, H. M.; Yao, Q. J.; Xia, Y. N.; Luo, J.; Shi, B. F. Angew. Chem., Int. Ed. 2018, 57, 17151.
Liao, G.; Chen, H. M.; Xia, Y. N.; Li, B.; Yao, Q. J.; Shi, B. F. Angew. Chem., Int. Ed. 2019, 58, 11464.
doi: 10.1002/anie.201906700
Zhang, S.; Liao, G.; Shi, B. Chin. J. Org. Chem. 2019, 39, 1522(in Chinese).
(a) Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. ACS Catal. 2019, 9, 1956.
(b) Chen, H.-M.; Zhang, S.; Liao, G.; Yao, Q.-J.; Xu, X.-T.; Zhang, K.; Shi, B.-F. Organometallics 2019, 38, 4022.
(c) Zhang, J.; Xu, Q.; Wu, J.; Fan, J.; Xie, M. Org. Lett. 2019, 21, 6361.
Jin, L.; Yao, Q.-J.; Xie, P.-P.; Li, Y.; Zhan, B.-B.; Han, Y.-Q.; Hong, X.; Shi, B.-F. Chem 2020, 6, 497
doi: 10.1016/j.chempr.2019.12.011
Song, H.; Li, Y.; Yao, Q. J.; Jin, L.; Liu, L.; Liu, Y. H.; Shi, B. F. Angew. Chem., Int. Ed. 2020, 59, 6576.
doi: 10.1002/anie.201915949
Xu, J.; Liu, Y.; Zhang, J.; Xu, X.; Jin, Z. Chem. Commun. 2018, 54, 689.
doi: 10.1039/C7CC09273C
Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.
doi: 10.1126/science.aad7893
(a) Ma, F.; Lei, M.; Hu, L. Org. Lett. 2016, 18, 2708.
(b) Chen, J.; Bai, C.; Ma, H.; Liu, D.; Bao, Y.-S. Chin. Chem. Lett. 2020, DOI: 10.1016/j.cclet.2020.02.055.
Park, H.; Yoo, K.; Jung, B.; Kim, M. Tetrahedron 2018, 74, 2048.
doi: 10.1016/j.tet.2018.03.006
Tang, M.; Yu, Q.; Wang, Z.; Zhang, C.; Sun, B.; Yi, Y.; Zhang, F. L. Org. Lett. 2018, 20, 7620.
doi: 10.1021/acs.orglett.8b03359
Yang, K.; Li, Q.; Liu, Y.; Li, G.; Ge, H. J. Am. Chem. Soc. 2016, 138, 12775.
doi: 10.1021/jacs.6b08478
St John-Campbell, S.; White, A. J. P.; Bull, J. A. Chem. Sci. 2017, 8, 4840.
doi: 10.1039/C7SC01218G
Hong, K.; Park, H.; Yu, J. Q. ACS Catal. 2017, 7, 6938.
doi: 10.1021/acscatal.7b02905
Pan, L.; Yang, K.; Li, G.; Ge, H. Chem. Commun. 2018, 54, 2759.
doi: 10.1039/C8CC00980E
Zhang, Y.-F.; Wu, B.; Shi, Z.-J. Chem.-Eur. J. 2016, 22, 17808.
doi: 10.1002/chem.201603805
Mu, D.; Wang, X.; Chen, G.; He, G. J. Org. Chem. 2017, 82, 4497.
doi: 10.1021/acs.joc.7b00531
Wang, X.; Song, S.; Jiao, N. Chin. J. Chem. 2018, 36, 213.
doi: 10.1002/cjoc.201700726
Rasheed, O. Synlett 2018, 29, 1033.
doi: 10.1055/s-0036-1591765
Huang, J.; Ding, J.; Ding, T. M.; Zhang, S.; Wang, Y.; Sha, F.; Zhang, S. Y.; Wu, X. Y.; Li, Q. Org. Lett. 2019, 21, 7342.
doi: 10.1021/acs.orglett.9b02632
Park, H.; Verma, P.; Hong, K.; Yu, J. Q. Nat. Chem. 2018, 10, 755.
doi: 10.1038/s41557-018-0048-1
Chen, X. Y.; Ozturk, S.; Sorensen, E. J. Org. Lett. 2017, 19, 6280.
doi: 10.1021/acs.orglett.7b02906
Li, F.; Zhou, Y.; Yang, H.; Wang, Z.; Yu, Q.; Zhang, F.-L. Org. Lett. 2019, 21, 3692.
doi: 10.1021/acs.orglett.9b01158
Yong, Q.; Sun, B.; Zhang, F.-L. Tetrahedron Lett. 2019, 60, 151263.
doi: 10.1016/j.tetlet.2019.151263
Qiao, H.; Sun, B.; Yu, Q.; Huang, Y.-Y.; Zhou, Y.; Zhang, F.-L. Org. Lett. 2019, 21, 6914.
doi: 10.1021/acs.orglett.9b02530
Wu, Y.-J.; Yao, Q.-J.; Chen, H.-M.; Liao, G.; Shi, B.-F. Sci. China:Chem. 2020, 63, 875.
Liu, Y.; Ge, H. Nat. Chem. 2016, 9, 26.
(a) Xu, J.-W.; Zhang, Z.-Z.; Rao, W.-H.; Shi, B.-F. J. Am. Chem. Soc. 2016, 138, 10750.
(b) Zhan, B.-B.; Li, Y.; Xu, J.-W.; Nie, X.-L.; Fan, J.; Jin, L.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 5858.
Xu, Y.; Young, M. C.; Wang, C.; Magness, D. M.; Dong, G. Angew. Chem., Int. Ed. 2016, 55, 9084.
doi: 10.1002/anie.201604268
Wu, Y.; Chen, Y. Q.; Liu, T.; Eastgate, M. D.; Yu, J. Q. J. Am. Chem. Soc. 2016, 138, 14554.
doi: 10.1021/jacs.6b09653
Yada, A.; Liao, W.; Sato, Y.; Murakami, M. Angew. Chem., Int. Ed. 2017, 56, 1073.
doi: 10.1002/anie.201610666
Chen, Y.-Q.; Wang, Z.; Wu, Y.; Wisniewski, S. R.; Qiao, J. X.; Ewing, W. R.; Eastgate, M. D.; Yu, J.-Q. J. Am. Chem. Soc. 2018, 140, 17884.
doi: 10.1021/jacs.8b07109
(a) Vicente, J.; Saura-Llamas, I.; Palin, M. G.; Jones, P. G.; Ramírez de Arellano, M. C. Organometallics 1997, 16, 826.
(b) Largeron, M. Eur. J. Org. Chem. 2013, 2013, 5225.
(c) Corey, E. J.; Achiwa, K. J. Am. Chem. Soc. 1969, 91, 1429.
(d) Hartwig, J. F.; Richards, S.; Barañano, D.; Paul, F. J. Am. Chem. Soc. 1996, 118, 3626.
(e) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 7215.
(f) Ryland, B. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2014, 53, 8824.
(a) Liu, L.; Liu, Y.-H.; Shi, B.-F. Chem. Sci. 2020, 11, 290.
(b) Xu, J.-W.; Zhang, Z.-Z.; Rao, W.-H.; Shi, B.-F. J. Am. Chem. Soc. 2016, 138, 10750.
Xiao, L.-J.; Hong, K.; Luo, F.; Hu, L.; Ewing, W. R.; Yeung, K.-S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2020, 59, 9594.
doi: 10.1002/anie.202000532
(a) Chen, G.; Gong, W.; Zhuang, Z.; Andrä, M. S.; Chen, Y.-Q.; Hong, X.; Yang, Y.-F.; Liu, T.; Houk, K. N.; Yu, J.-Q. Science 2016, 353, 1023.
(b) Yan, S.-Y.; Han, Y.-Q.; Yao, Q.-J.; Nie, X.-L.; Liu, L.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 9093.
(c) Han, Y.-Q.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558.
(d) Zhou, T.; Jiang, M.-X.; Yang, X.; Yue, Q.; Han, Y.-Q.; Ding, Y.; Shi, B.-F. Chin. J. Chem. 2020, 38, 242.
Yan Qi , Yueqin Yu , Weisi Guo , Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
Xiwen Xing , Muyi Guo , Zhuoran Hu , Shunchun Yao , Yao Sun . Context-Driven Teaching with Cue-Guided Reasoning: Taking X-Ray Teaching Practice as an Example. University Chemistry, 2025, 40(7): 141-147. doi: 10.12461/PKU.DXHX202409097
Jianquan Liu , Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082
Yuqiao Zhou , Weidi Cao , Shunxi Dong , Lili Lin , Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003
Bingliang Li , Yuying Han , Dianyang Li , Dandan Liu , Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070
Jiatong Hu , Qiyi Wang , Ruiwen Tang , Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
Qiying Xia , Guokui Liu , Yunzhi Li , Yaoyao Wei , Xia Leng , Guangli Zhou , Aixiang Wang , Congcong Mi , Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007
Fa Wang , Yu Chen , Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
TDG=transient directing group; TM=transition metal