Citation: Zeng Linwei, Cui Sunliang. Recent Progress in the Addition Reaction of Electron-Rich Alkynes and Carboxylic Acids[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2353-2373. doi: 10.6023/cjoc202003045 shu

Recent Progress in the Addition Reaction of Electron-Rich Alkynes and Carboxylic Acids

  • Corresponding author: Cui Sunliang, slcui@zju.edu.cn
  • Received Date: 18 March 2020
    Revised Date: 29 April 2020
    Available Online: 11 May 2020

    Fund Project: National Natural Science Foundation of China 21971222Key R & D Plan of Zhejiang Province 2019C03082Project supported by the National Natural Science Foundation of China (No. 21971222) and the Key R & D Plan of Zhejiang Province (No. 2019C03082)

Figures(32)

  • Electron-rich alkynes, in which an electron-donating atom or group is attached to the triple bond, have been widely used as versatile building blocks in organic synthesis, due to their unique chemical reactivity. As an important part of electron-rich alkyne chemistry, the addition reaction between electron-rich alkynes and carboxylic acids received considerable attention these years, and various investigations and advances have been reported. The progress of addition reactions between electron-rich alkynes and carboxylic acids is summarized, and the future perspective is prospected.
  • 加载中
    1. [1]

      (a) Janousek, Z.; Viehe, H. G.; Collard, J. Angew. Chem., Int. Ed. 1972, 11, 917.
      (b) Tu, Y.; Zeng, X.; Wang, H.; Zhao, J. Org. Lett. 2018, 20, 280.
      (c) Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G. Angew. Chem., Int. Ed. 2009, 48, 4381.
      (d) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K. C. M.; Shen, L. C.; Douglas, C. J. J. Am. Chem. Soc. 2003, 125, 2368.
      (e) Mansfield, S. J.; Campbell, C. D.; Jones, M. W.; Anderson, E. A. Chem. Commun. 2015, 51, 3316.
      (f) Souto, J. A.; Becker, P.; Iglesias, A.; Muniz, K. J. Am. Chem. Soc. 2012, 134, 15505.
      (g) Zhang, X. J.; Zhang, Y. S.; Huang, J.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanova, I. K.; Shen, L. C.; Tracey, M. R. J. Org. Chem. 2006, 71, 4170.
      (h) Jouvin, K.; Coste, A.; Bayle, A.; Legrand, F.; Karthikeyan, G.; Tadiparthi, K.; Evano, G. Organometallics 2012, 31, 7933.
      (i) Jouvin, K.; Bayle, A.; Legrand, F.; Evano, G. Org. Lett. 2012, 14, 1652.
      (j) Kanemoto, K.; Yoshida, S.; Hosoya, T. Org. Lett. 2019, 21, 3172.
      (k) Kiefer, G.; Riedel, T.; Dyson, P. J.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2015, 54, 302.
      (l) Pena, J.; Talavera, G.; Waldecker, B.; Alcarazo, M. Chem.-Eur. J. 2017, 23, 75.

    2. [2]

    3. [3]

      (a) Marion, F.; Courillon, C.; Malacria, M. Org. Lett. 2003, 5, 5095.
      (b) Banerjee, B.; Litvinov, D. N.; Kang, J.; Bettale, J. D.; Castle, S. L. Org. Lett. 2010, 12, 2650.
      (c) Wang, L.; Lu, C. R.; Yue, Y. N.; Feng, C. Org. Lett. 2019, 21, 3514.

    4. [4]

      (a) Shen, C.-H.; Li, L.; Zhang, W.; Liu, S.; Shu, C.; Xie, Y.-E.; Yu, Y.-F.; Ye, L.-W. J. Org. Chem. 2014, 79, 9313.
      (b) Liu, R. H.; Winston-McPherson, G. N.; Yang, Z. Y.; Zhou, X.; Song, W. Z.; Guzei, I. A.; Xu, X. F.; Tang, W. P. J. Am. Chem. Soc. 2013, 135, 8201.
      (c) Davies, P. W.; Cremonesi, A.; Martin, N. Chem. Commun. 2011, 47, 379.

    5. [5]

      (a) Ding, S. T.; Jia, G. C.; Sun, J. W. Angew. Chem., Int. Ed. 2014, 53, 1877.
      (b) Tian, X. H.; Song, L. N.; Rudolph, M.; Rominger, F.; Oeser, T.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2019, 58, 3589.
      (c) DeKorver, K. A.; Li, H. Y.; Lohse, A. G.; Hayashi, R.; Lu, Z. J.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
      (d) Zhou, B.; Li, L.; Zhu, X. Q.; Yan, J. Z.; Guo, Y. L.; Ye, L. W. Angew. Chem., Int. Ed. 2017, 56, 4015.
      (e) Zeng, L.; Lai, Z.; Zhang, C.; Xie, H.; Cui, S. Org. Lett. 2020, 22, 2220.

    6. [6]

      (a) Zhang, W. H.; Ready, J. M. J. Am. Chem. Soc. 2016, 138, 10684.
      (b) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett. 2005, 7, 1047.
      (c) Couty, S.; Liegault, B.; Meyer, C.; Cossy, J. Tetrahedron 2006, 62, 3882.
      (d) Couty, S.; Meyer, C.; Cossy, J. Tetrahedron Lett. 2006, 47, 767.
      (e) Alayrac, C.; Schollmeyer, D.; Witulski, B. Chem. Commun. 2009, 1464.

    7. [7]

    8. [8]

      (a) Kanemura, S.; Kondoh, A.; Yasui, H.; Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2008, 81, 506.
      (b) Yasui, H.; Yorimitsu, H.; Oshima, K. Chem. Lett. 2008, 37, 40.
      (c) Kim, S. W.; Um, T. W.; Shin, S. Chem. Commun. 2017, 53, 2733.

    9. [9]

      (a) Tolchinskii, S. E.; Dogadina, A. V.; Maretina, I. A.; Petrov, A. A. Zh. Org. Khim. 1980, 16, 1141.
      (b) Yoo, H. J.; Youn, S. W. Org. Lett. 2019, 21, 3422.

    10. [10]

      (a) Rentsch, C.; Slongo, M.; Stadelma, W.; Neuensch, M. Chimia 1973, 27, 70.
      (b) Zhang, Y.; DeKorver, K. A.; Lohse, A. G.; Zhang, Y. S.; Huang, J.; Hsung, R. P. Org. Lett. 2009, 11, 899.
      (c) DeKorver, K. A.; Johnson, W. L.; Zhang, Y.; Hsung, R. P.; Dai, H. F.; Deng, J.; Lohse, A. G.; Zhang, Y. S. J. Org. Chem. 2011, 76, 5092.

    11. [11]

      (a) Bianchini, C.; Meli, A.; Peruzzini, M.; Zanobini, F.; Bruneau, C.; Dixneuf, P. H. Organometallics 1990, 9, 1155.
      (b) Chen, J.-F.; Li, C. Org. Lett. 2018, 20, 6719.
      (c) Goossen, L. J.; Paetzold, J.; Koley, D. Chem. Commun. 2003, 706.
      (d) Hua, R. M.; Tian, X. J. Org. Chem. 2004, 69, 5782.
      (e) Jeschke, J.; Gabler, C.; Lang, H. J. Org. Chem. 2016, 81, 476.
      (f) Lumbroso, A.; Vautravers, N. R.; Breit, B. Org. Lett. 2010, 12, 5498.
      (g) Rotem, M.; Shvo, Y. Organometallics 1983, 2, 1689.
      (h) Wang, Y.; Wang, Z.; Li, Y.; Wu, G.; Cao, Z.; Zhang, L. Nat. Commun. 2014, 5, 3470.
      (i) Dupuy, S.; Gasperini, D.; Nolan, S. P. ACS Catal. 2015, 5, 6918.

    12. [12]

      Smith, D. L.; Goundry, W. R. F.; Lam, H. W. Chem. Commun. 2012, 48, 1505.

    13. [13]

      Xu, S.; Liu, J.; Hu, D.; Bi, X. Green Chem. 2015, 17, 184.

    14. [14]

      (a) Hu, L.; Xu, S.; Zhao, Z.; Yang, Y.; Peng, Z.; Yang, M.; Wang, C.; Zhao, J. J. Am. Chem. Soc. 2016, 138, 13135.
      (b) Hu, L.; Zhao, J. Synlett 2017, 28, 1663.

    15. [15]

      Yang, J.; Wang, C.; Xu, S.; Zhao, J. Angew. Chem., Int. Ed. 2019, 58, 1382.

    16. [16]

      Wang, X.; Yang, Y.; Zhao, Y.; Wang, S.; Hu, W.; Li, J.; Wang, Z.; Yang, F.; Zhao, J. J. Org. Chem. 2020, 85, 6188.

    17. [17]

      Yang, M.; Wang, X.; Zhao, J. ACS Catal. 2020, 10, 5230.

    18. [18]

      Huang, B.; Zeng, L.; Shen, Y.; Cui, S. Angew. Chem., Int. Ed. 2017, 56, 4565.

    19. [19]

      Shen, Y.; Huang, B.; Zeng, L.; Cui, S. Org. Lett. 2017, 19, 4616.

    20. [20]

      (a) Quinone Methides, Ed.: Rokita, S. E., Wiley, New York, 2009.
      (b) Yang, B.; Gao, S. Chem. Soc. Rev. 2018, 47, 7926.

    21. [21]

      Chen, R.; Liu, Y.; Cui, S. Chem. Commun. 2018, 54, 11753.

    22. [22]

      Shen, Y.; Li, Q.; Xu, G.; Cui, S. Org. Lett. 2018, 20, 5194.

    23. [23]

      Shen, Y.; Wang, C.; Chen, W.; Cui, S. Org. Chem. Front. 2018, 5, 3574.

    24. [24]

      (a) Pusterla, I.; Bode, J. W. Angew. Chem., Int. Ed. 2012, 51, 513.
      (b) Doll, M. K. H. J. Org. Chem. 1999, 64, 1372.
      (c) Gooβen, L. J.; Rudolphi, F.; Oppel, C.; Rodríguez, N. Angew. Chem., Int. Ed. 2008, 47, 3043.
      (d) Shang, R.; Fu, Y.; Li, J.-B.; Zhang, S.-L.; Guo, Q.-X.; Liu, L. J. Am. Chem. Soc. 2009, 131, 5738.

    25. [25]

      Chen, R.; Zeng, L.; Huang, B.; Shen, Y.; Cui, S. Org. Lett. 2018, 20, 3377.

    26. [26]

      Habert, L.; Retailleau, P.; Gillaizeau, I. Org. Biomol. Chem. 2018, 16, 7351.

    27. [27]

      (a) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016, 352, 801.
      (b) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C. M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174.
      (c) Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T. G.; Dixon, D. D.; Creech, G.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 11132.
      (d) Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. Angew. Chem., Int. Ed. 2019, 58, 112.
      (e) Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C. X.; Eastgate, M. D.; Baran, P. S. Angew. Chem., Int. Ed. 2017, 56, 260.
      (f) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D. H.; Wei, F. L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature 2017, 545, 213.

    28. [28]

      Huang, B.; Zeng, L.; Shen, Y.; Cui, S. Chem. Commun. 2017, 53, 11996.

    29. [29]

      (a) Wasserman, H. H.; Wharton, P. S. J. Am. Chem. Soc. 1960, 82, 661.
      (b) Wasserman, H. H.; Wharton, P. S. Tetrahedron 1958, 3, 321.

    30. [30]

      Kita, Y.; Akai, S.; Yoshigi, M.; Nakajima, Y.; Yasuda, H.; Tamura, Y. Tetrahedron Lett. 1984, 25, 6027.

    31. [31]

      Kita, Y.; Akai, S.; Ajimura, N.; Yoshigi, M.; Tsugoshi, T.; Yasuda, H.; Tamura, Y. J. Org. Chem. 1986, 51, 4150.

    32. [32]

      Kita, Y.; Akai, S.; Yamamoto, M.; Taniguchi, M.; Tamura, Y. Synthesis 1989, 334.

    33. [33]

      Yin, J.; Bai, Y. H.; Mao, M. Y.; Zhu, G. G. J. Org. Chem. 2014, 79, 9179.

    34. [34]

      Zeng, L.; Huang, B.; Shen, Y.; Cui, S. Org. Lett. 2018, 20, 3460.

    35. [35]

      (a) Zeng, L.; Lai, Z.; Cui, S. J. Org. Chem. 2018, 83, 14834.
      (b) Zeng, L.; Sajiki, H.; Cui, S. Org. Lett. 2019, 21, 6423.

    36. [36]

      Berger, D.; Neuenschwander, M. Helv. Chim. Acta 1996, 79, 192.

    37. [37]

      Mishiro, K.; Yushima, Y.; Kunishima, M. J. Org. Chem. 2018, 83, 13595.

    38. [38]

      (a) Wang, H.; Cheng, Y.; Becker, P.; Raabe, G.; Bolm, C. Angew. Chem., Int. Ed. 2016, 55, 12655.
      (b) Priebbenow, D. L.; Becker, P.; Bolm, C. Org. Lett. 2013, 15, 6155.

    39. [39]

      Pirwerdjan, R.; Becker, P.; Bolm, C. Org. Lett. 2015, 17, 5008.

    40. [40]

      (a) Kossler, D.; Perrin, F. G.; Suleymanov, A. A.; Kiefer, G.; Scopelliti, R.; Severin, K.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 11490.
      (b) Jeanbourquin, L. N.; Scopelliti, R.; Tirani, F. F.; Severin, K. Org. Lett. 2017, 19, 2070.
      (c) Suleymanov, A. A.; Scopelliti, R.; Tirani, F. F.; Severin, K. Adv. Synth. Catal. 2018, 360, 4178.
      (d) Tan, J. F.; Bormann, C. T.; Perrin, F. G.; Chadwick, F. M.; Seyerin, K.; Cramer, N. J. Am. Chem. Soc. 2019, 141, 10372.

    41. [41]

      Perrin, F. G.; Kiefer, G.; Jeanbourquin, L.; Racine, S.; Perrotta, D.; Waser, J.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2015, 54, 13393.

    42. [42]

      Landman, I. R.; Acuna-Bolomey, E.; Scopelliti, R.; Fadaei-Tirani, F.; Seyerin, K. Org. Lett. 2019, 21, 6408.

    43. [43]

      Zeng, L.; Chen, R.; Zhang, C.; Xie, H.; Cui, S. Chem. Commun. 2020, 56, 3093.

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    8. [8]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    11. [11]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    15. [15]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    16. [16]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    17. [17]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

Metrics
  • PDF Downloads(74)
  • Abstract views(5457)
  • HTML views(1474)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return