Citation: Ji Yu, Yao Hui, Liu Yi, Huang Nianyu, Liu Mingguo. Synthesis and Cytotoxic Activity of C-Vinyl-rhamnopyranoside Derivatives[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 2051-2061. doi: 10.6023/cjoc202003037 shu

Synthesis and Cytotoxic Activity of C-Vinyl-rhamnopyranoside Derivatives

  • Corresponding author: Huang Nianyu, hny115@126.com Liu Mingguo, mgliu1966@163.com
  • Received Date: 14 March 2020
    Revised Date: 19 April 2020
    Available Online: 23 April 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21602123), and the Youth Talent Development Foundation and Scientific Foundation from Graduate School of China Three Gorges University (No. SDYC2016121)the National Natural Science Foundation of China 21602123the Youth Talent Development Foundation and Scientific Foundation from Graduate School of China Three Gorges University SDYC2016121

Figures(3)

  • A novel gold(Ⅰ)-catalyzed glycosylation method was described to synthesize C-vinyl-rhamnopyranoside derivatives using stable propargylic carboxylates and 3, 4-di-O-acetyl-L-rhamnal as starting materials, based on the tandem intermolecular 1, 3-acyloxy migration/Ferrier rearrangement. The C-glycosylation process has been verified by O18 isotopic labeling experiment, and the absolute configuration of synthesized products was determined by X-ray single crystal diffraction. The cytotoxic activity was investigated by methyl thiazolyl tetrazolium (MTT). It indicates that product 3i has strong inhibitory effect on human gastric cancer cells HGC-27 with IC50 18.29 μmol·L-1. The described synthetic method was outstanding with easy-to-operate, high diastereoselectivity, and mild reaction condition.
  • 加载中
    1. [1]

      (a) Compain, P.; Martin, O. R. Bioorg. Med. Chem. 2001, 9, 3077.
      (b) Chen, C. L.; Sparks, S. M.; Martin, S. F. J. Am. Chem. Soc. 2006, 128, 13696.
      (c) Štambaský, J.; Hocek, M.; Kocovský, P. Chem. Rev. 2009, 109, 6729.
      (d) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495.
      (e) Liao, H. Z; Ma, J.; Yao, H.; Liu, X. W. Org. Biomol. Chem. 2018, 16, 1791.
      (f) Norsikian, S.; Tresse, C.; François-Eude, M.; Jeanne-Julien, L.; Masson, G.; Servajean, V.; Genta-Jouve, G.; Beau, J. M.; Roull, E. Angew. Chem., Int. Ed. 2020, 59, 6612.
      (g) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495.

    2. [2]

      (a) Hassanzadeh, A.; Gorry, P. A.; Morris, G. A.; Barber, J. J. Med. Chem. 2006, 49, 6334.
      (b) Kim, B. G.; Kim, H. J.; Ahn, J. H. J. Agric. Food. Chem. 2012, 60, 11143.
      (c) Bhattarai, B.; Nagorny, P. Org. Lett. 2018, 20, 154.
      (d) Chauvin, A.; Nepogodiev, S.; Field, R. J. Org. Chem. 2005, 70, 960.
      (e) Urabe, D.; Nakagawa, Y.; Mukai, K.; Fukushima, K.; Aoki, N.; Itoh, H.; Nagatomo, M.; Inoue, M. J. Org. Chem. 2018, 83, 13888.
      (f) Lee, H. S.; Kim, M. J. J. Agric. Food. Chem. 2002, 50, 1840.
      (g) Khatri, H. R.; Bhattarai, B.; Kaplan, W.; Li, Z.; Long, M. J. C.; Aye, Y.; Nagorny, P. J. Am. Chem. Soc. 2019, 141, 4849.
      (h) Crich, D.; Li, H. J. Org. Chem. 2002, 67, 4640.
      (i) Ashraf Shalaby, M.; Fronczek, F. R.; Younathan, E. S. Carbohydr. Res. 1994, 258, 267

    3. [3]

      (a) Chen, C. L.; Sparks, S. M.; Martin, S. F. J. Am. Chem. Soc. 2006, 128, 13696.
      (b) Tius, M. A.; Gu, X.; Gomez-Galeno, J. J. Am. Chem. Soc. 1990, 112, 8188.
      (c) Liao, H. Z; Ma, J.; Yao, H.; Liu, X. W. Org. Biomol. Chem. 2018, 16, 1791.

    4. [4]

      (a) Cai, X.; Ng, K.; Panesar, H.; Moon, S. J.; Paredes, M.; Ishida, K.; Hertweck, C.; Minehan, T. G. Org. Lett. 2014, 16, 2962.
      (b) Liao, H. Z; Ma, J.; Yao, H.; Liu, X. W. Org. Biomol. Chem. 2018, 16, 1791.

    5. [5]

      Szeja, W.; Grynkiewicz, G.; Bieg, T.; Swierk, P.; Byczek, A.; Papaj, K.; Kitel, R.; Rusin, A. Molecules 2014, 19, 7072.
       

    6. [6]

      (a) Gong, H.; Sinisi, R.; Gagne, M. R. J. Am. Chem. Soc. 2007, 129, 1908.
      (b) Gong, H.; Gagne, M. R. J. Am. Chem. Soc. 2008, 130, 12177.
      (c) Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274.
      (d) Nicolas, L.; Angibaud, P.; Stansfield, I.; Bonnet, P.; Meerpoel, L.; Reymond, S.; Cossy, J. Angew. Chem., Int. Ed. 2012, 51, 11101.
      (e) Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140.
      (f) Zhao, C.; Jia, X.; Wang, X.; Gong, H. J. Am. Chem. Soc. 2014, 136, 17645.
      (g) Zhu, F.; Rourke, M. J.; Yang, T.; Rodriguez, J.; Walczak, M. A. J. Am. Chem. Soc. 2016, 138, 1204.
      (h) Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H. C.; Shing, T. K. M.; Nakamura, M. J. Am. Chem. Soc. 2017, 139, 10693.

    7. [7]

      (a) Koppolu, S. R.; Niddana, R.; Balamurugan, R. Org. Biomol. Chem. 2015, 13, 5094.
      (b) Wang, Y.; Liu, M.; Liu, L.; Xia, J. H.; Du, Y. G.; Sun, J. S. J. Org. Chem. 2018, 83, 4111.

    8. [8]

      (a) Bolitt, V.; Mioskowski, C.; Kollah, R. O.; Manna, S.; Rajapaksa, D.; Falck, J. R. J. Am. Chem. Soc. 1991, 113, 6320.
      (b) Fuganti, C.; Serra, S. Synlett 1999, 1999, 1241.
      (c) Kulkarni, S. S.; Gervay-Hague, J. Org. Lett. 2006, 8, 5765.
      (d) Kaliappan, K. P.; Subrahmanyam, A. V. Org. Lett. 2007, 9, 1121.
      (e) Snajdr, I.; Parkan, K.; Hessler, F.; Kotora, M. Beilstein J. Org. Chem. 2015, 11, 1392.

    9. [9]

      (a) Li, X.; Chen, G.; Garcia-Navarro, R.; Franck, R. W.; Tsuji, M. Immunology 2009, 127, 216.
      (b) Yao, Y.; Xiong, C. P.; Zhong, y. L.; Bian, G. W.; Huang, N. Y.; Wang, L.; Zou, K. Adv. Synth. Catal. 2019, 5 1012.

    10. [10]

      Bai, Y.; Leow, M.; Zeng, J.; Liu, X.-W. Org. Lett. 2011, 13, 5648.  doi: 10.1021/ol202368n

    11. [11]

      Tatina, M.; Kusunuru, A. K.; Yousuf, S. K.; Mukherjee, D. Chem. Commun. 2013, 49, 11409.  doi: 10.1039/c3cc46914j

    12. [12]

      (a) Sharma, B. M.; Rathod, J.; Gonnade, R. G.; Kumar, P. J. Org. Chem. 2018, 83, 9353.
      (b) Ruengsangtongkul, S.; Chaisan, N.; Thongsornkleeb, C.; Tummatorn, J. Org. Lett. 2019, 21, 2514.

    13. [13]

      Veryser, C.; Steurs, G.; Meervelt, L. V.; Borggraeve, W. M. Adv. Synth. Catal. 2017, 359, 1271.  doi: 10.1002/adsc.201601388

    14. [14]

      Xiao, Q.; Zheng, F.; Tang, Q.; Wu, J. J.; Xie, J.; Huang, H. D.; Yang, X. B.; Hann, S. S. Cell Physiol. Biochem. 2018, 49, 1615.  doi: 10.1159/000493497

    15. [15]

      (a) Xu, Y.; Wang, W. J.; Cai, Y.; Yang, X.; Wang, P. G.; Zhao, W. RSC Adv. 2014, 4, 46662.
      (b) Gagarinov, I. A.; Fang, T.; Liu, L.; Srivastava, A. D.; Boons, G. J. Org. Lett. 2015, 17, 928.
      (c) Suzuki, K.; Sulikowski, G. A.; Friesen, R. W.; Danishefsk, S. J. J. Am. Chem. Soc. 1990, 112, 8895.
      (d) Wang, J.; Deng, C.; Zhang, Q.; Chai, Y. Org. Lett. 2019, 21, 1103.

    16. [16]

      (a) Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Angew. Chem., Int. Ed. 2015, 54, 12134.
      (b) Reddy, V.; Vijaya, A. R. Org. Lett. 2015, 17, 3390.
      (c) Chu, W. D.; Zhang, L. F.; Bao, X.; Zhao, X. H.; Zeng, C.; Du, J. Y.; Zhang, G. B.; Wang, F. X.; Ma, X. Y.; Fan, C. A. Angew. Chem., Int. Ed. 2013, 52, 9229.
      (d) Onishi, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2014, 16, 1176.

  • 加载中
    1. [1]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    2. [2]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    3. [3]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    4. [4]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    5. [5]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    6. [6]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    7. [7]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    8. [8]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    9. [9]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    10. [10]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    11. [11]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    12. [12]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    13. [13]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    14. [14]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    15. [15]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    20. [20]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

Metrics
  • PDF Downloads(4)
  • Abstract views(1528)
  • HTML views(194)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return