Citation: Huang Shuaishuai, Nie Yixue, Yang Jingjing, Zheng Zhanjiang, Cao Jian, Xu Zheng, Xu Liwen. Copper-Catalyzed Arylated Etherification of 2, 2-Difluoroethanol and Its Mechanistic Study[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 2018-2025. doi: 10.6023/cjoc202003035 shu

Copper-Catalyzed Arylated Etherification of 2, 2-Difluoroethanol and Its Mechanistic Study

  • Corresponding author: Zheng Zhanjiang, zzjiang78@hznu.edu.cn Xu Liwen, liwenxu@hznu.edu.cn
  • Received Date: 14 March 2020
    Revised Date: 17 April 2020
    Available Online: 23 April 2020

    Fund Project: the National Natural Science Foundation of China 21801056Project supported by the National Natural Science Foundation of China (Nos. 21703051, 21801056) and the Hangzhou Science and Technology Bureau of China (No. 20180432B05)the National Natural Science Foundation of China 21703051the Hangzhou Science and Technology Bureau of China 20180432B05

Figures(3)

  • Both organofluorine and organosilicon compounds are one of the most important types of high-tech product in elementorganic chemistry, and have been received much attetions in the past decades. Considering the imporatance of difluoroethanol moeity in pesticides, the development of a mild and efficient copper-catalyzed arylated etherification reaction of difluoroethanol is highly desirable. Herein, a mild and efficient method for the preparation of difluoroethyl aryl ethers was developed by the copper-catalyzed Ullmann-type arylated etherification reaction of aryl bromides or iodides with 2, 2-difluoroethanol. This reaction proceeds smoothly in the presence of CuI and 8-hydroxyquinoline/t-BuOK, and has a broad substrate scope. ESI-MS analysis supported the existence of LCu(Ⅲ)Ar(OR) species during this catalytic reaction. Further density functional theory (DFT) calculations suggest a proposed mechanism of arylated etherification reaction involving oxidative addition, followed by nucleophile substitution and reductive elimination would be rational.
  • 加载中
    1. [1]

      (a) Nakajima, T.; Groult, H. Fluorinated Materials for Energy Conversion, Elsevier, London, 2005.
      (b) Wong, S.; Ma, H.; Jen, A. K. Y.; Barto, R.; Frank, C. W. Macromolecules 2003, 36, 8001.
      (c) Wong, S.; Ma, H.; Jen, A. K. Y.; Barto, R.; Frank, C. W. Macromolecules 2004, 37, 5578.

    2. [2]

      (a) Tressaud, A.; Haufe, G. Fluorine and Health: Molecular Imaging, Biomedical Materials and Pharmaceuticals, Elsevier, London, 2008.
      (b) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley, Hoboken, 2009.
      (c) Xu, X. H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.

    3. [3]

      Jeschke, P. ChemBioChem 2004, 5, 570.
       

    4. [4]

      (a) Banks, R. E.; Smart, B. E.; Tatlow, J. C. Organofluorine Chemistry, Principles and Commercial Applications, Plenum, New York, 1994.
      (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (c) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.

    5. [5]

      (a) Gao, X.; Cheng, R.; Xiao, Y. L.; Wan, X. L.; Zhang, X. G. Chem 2019, 5, 2987.
      (b) Begue, J. P.; Bonnet-Delpon, D. J. Fluorine Chem. 2006, 127, 992.
      (c) Cerqueira, N. M. F. S. A.; Fernandes, P. A.; Ramos, M. J. Chemistry 2007, 13, 8507.
      (d) Teague, S. J. Drug Discovery Today 2011, 16, 398.
      (e) Cheng, J. J.; Giguere, P. M.; Onajole, O. K.; Lv, W.; Gaisin, A.; Gunosewoyo, H.; Schmerberg, C.; Pogorelov, V. M.; Rodriguiz, R. M.; Vistoli, G.; Wetsel, W. C.; Roth, B. L.; Kozikowski, A. P. J. Med. Chem. 2015, 58, 1992.
      (f) Johan, B. WO 2010132016, 2010.
      (g) Gregory, B. M. WO 02072528, 2002.
      (h) Gernert, D. L.; Ajamie, R.; Ardecky, R. A.; Bell, M. G.; Leibowitz, M. D.; Mais, D. A.; Mapes, C. M.; Michellys, P. Y.; Rungta, D.; Reifel-Miller, A.; Tyhonas, J. S.; Yumibe, N.; Grese, T. A. Bioorg. Med. Chem. Lett. 2003, 13, 3191.
      (i) Ulrich, K. WO 2005085203, 2005.
      (j) Ulrich, K. WO 2006092417, 2006.

    6. [6]

      (a) Irrupe, Jr. J.; Casas, J.; Messeguer, A. Bioorg. Med. Chem. Lett. 1993, 3, 179.
      (b) Thomas, W. J.; Ronald, S. T. J. Agric. Food Chem. 2005, 53, 7179.

    7. [7]

      (a) Schwan, G.; Asskar, G. B.; Hcfgen, N.; Kubicova, L.; Funke, U.; Egerland, U.; Zahn, M.; Nieber, K.; Scheunemann, M.; Strter, N.; Brust, P.; Briel, D. ChemMedChem 2014, 9, 1476.
      (b) OShea, P. D.; Gauvreau, D.; Gosselin, F.; Hughes, G.; Nadeau, C.; Roy, A.; Scott Shultz, C. J. Org. Chem. 2009, 74, 4547.
      (c) Kamal, A.; Pratap, T. B.; Ramana, K. V.; Ramana, A. V.; Babu, A. H. Tetrahedron Lett. 2002, 43, 7353.
      (d) Camps, F.; Coll, J.; Messeguer, A.; Perics, M. A. Synthesis 1980, 727.

    8. [8]

      Fuhrmann, E.; Talbiersky, J. Org. Process Res. Dev. 2005, 9, 206.  doi: 10.1021/op050001h

    9. [9]

      (a) Zhang, H.; Ruiz-Castillo, P.; Buchwald, S. L. Org. Lett. 2018, 20, 1580.
      (b) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2010, 132, 11592.
      (c) Sawatzky, R. S.; Hargreaves, B. K. V.; Stradiotto, M. Eur. J. Org. Chem. 2016, 2016, 2444.
      (d) Dumrath, A.; Wu, X. F.; Neumann, H.; Spannenberg, A.; Jackstell, R.; Beller, M. Angew. Chem., Int. Chem. 2010, 49, 8988.
      (e) Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 3224.

    10. [10]

      Rangarajan, T. M.; Singh, R.; Brahma, R.; Devi, K.; Pal Singh, R.; Singh, R. P.; Prasad, A. K. Chem.-Eur. J. 2014, 20, 14218.  doi: 10.1002/chem.201404121

    11. [11]

      (a) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120, 12459.
      (b) Goodbrand, H. B.; Hu, N. X. J. Org. Chem. 1999, 64, 670.
      (c) Fagan, P. J.; Hauptman, E.; Shapiro, R.; Casalnuovo, A. J. Am. Chem. Soc. 2000, 122, 5043.

    12. [12]

      (a) Suzuki, H.; Matuoka, T.; Ohtsuka, I.; Osuka, A. Synthesis 1985, 499.
      (b) Sugata, H.; Tsubogo, T.; Kino, Y.; Uchiro, H. Tetrahedron Lett. 2017, 58, 1015.

    13. [13]

      (a) Wolter, M.; Nordmann, G.; Job, E.; Buchwald, S. L. Org. Lett. 2002, 4, 973.
      (b) Tlili, A.; Xia, N.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Chem. 2009, 48, 8725.
      (c) Chen, Z. X.; Jiang, Y. W.; Zhang, L.; Guo, Y. L.; Ma, D. W. J. Am. Chem. Soc. 2019, 141, 3541.
      (d) Cai, Q.; Zhou, W. Chin. J. Chem. 2020, 38, 879.

    14. [14]

      (a) Huang, R. L.; Huang, Y. J.; Lin, X. X.; Rong, M.; Weng, Z. Angew. Chem., Int. Ed. 2015, 54, 5736.
      (b) Vuluga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Eur. J. Org. Chem. 2009, 3513.

    15. [15]

      Niu, J. J.; Guo, P. R.; Kang, J. T.; Li, Z. G.; Xu, J. W.; Hu, S. J. J. Org. Chem. 2009, 74, 5075.

    16. [16]

    17. [17]

      (a) Ye, D.; Huang, R.; Zhu, H.; Zou, L.; Wang, D. Org. Chem. Front. 2019, 6, 62.
      (b) Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green Chem. 2019, 21, 5345.
      (c) Wang, D.; Zhao, K.; Xu, C.; Miao, H.; Ding, Y. ACS Catal. 2014, 4, 3910.

    18. [18]

      (a) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676.
      (b) Cristau, H. J.; Cellier, P. P.; Spinddler, J. F.; Taillefer, M. Chem.- Eur. J. 2004, 10, 5607.
      (c) Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693.
      (d) Xie, X.; Chen, Y.; Ma, D. J. Am. Chem. Soc. 2006, 128, 16050.

    19. [19]

      (a) Yu, H. Z.; Jiang, Y. Y.; Fu, Y.; Liu, L. J. Am. Chem. Soc. 2010, 132, 18078.
      (b) Ribas, X.; Guell, I. Pure Appl. Chem. 2014, 86, 345.
      (c) Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.
      (d) Casitas, A.; Ribas, X. Chem. Sci. 2013, 4, 2301.
      (e) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.
      (f) Lefevre, G.; Franc, G.; Tlili, A.; Adamo, C.; Taillefer, M.; Ciofini, I.; Jutand, A. Organometallics 2012, 31, 7694.
      (g) Giri, R.; Brusoe, A.; Troshin, K.; Wang, J. Y.; Font, M.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 793.
      (h) Tye, J. W.; Weng, Z.; Giri, R.; Hartwig, J. F. Angew. Chem., Int. Ed. 2010, 49, 2185.

  • 加载中
    1. [1]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    2. [2]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    3. [3]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    12. [12]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    13. [13]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    14. [14]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    19. [19]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    20. [20]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

Metrics
  • PDF Downloads(12)
  • Abstract views(1304)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return