Citation: Ke Cuilian, Xu Weiping, Liu Da, Liu Yan, . Chiral Resolution of Biphenol and Asymmetric Alkylation under Phase Transfer Catalysis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1955-1966. doi: 10.6023/cjoc202003028 shu

Chiral Resolution of Biphenol and Asymmetric Alkylation under Phase Transfer Catalysis

  • Corresponding author: Liu Yan, yanliu@gdut.edu.cnmaruoka@kuchem.kyoto-u.ac.jp
  • Received Date: 11 March 2020
    Revised Date: 28 April 2020

    Fund Project: National Natural Science Foundation of China 21502023the Guangdong Provincial Key Research and Development Program 2019B020201005National Natural Science Foundation of China (Nos. 21977019, 21502023), the Guangdong Provincial Key Research and Development Program (No. 2019B020201005), the Open Project of Guangdong Provincial Key Laboratory of New Drug Screening (No. GDKLNDS-2018OF004)the Open Project of Guangdong Provincial Key Laboratory of New Drug Screening GDKLNDS-2018OF004National Natural Science Foundation of China 21977019

Figures(5)

  • Chiral phase transfer catalysts play extrememly important role in the construction of natural products, the core structures of chiral drugs, and functional chiral chemicals, therefore have attracted more and more attention in recent years. In this paper, the chiral resolution of biphenyl skeletons was achieved by utilizing the readily available (R)-α-methoxy benzene acetic acid as resolution agent. A series of new biphenyl type of phase transfer catalysts were designed and synthesized based on the optically pure C2-symmetric chiral biphenyl framework. These catalysts are readily applicable to asymmetric alkylation of N-(diphenylmethylene)glycine tert-butyl ester with excellent enantioselectivity (up to 96%) and yield (up to 97%). The structure-activity relationship study on these catalysts showed that the methylation of hydroxyl group at C2 and C2' position is favorable for the selectivity, introduction of tert-butyl group at C3 and C3' position is unfavorable to both selectivity and reactivity. The catalysts bearing 3, 4, 5-trifluorophenyl group or 3, 5-bis(trifluoromethyl)phenyl group at C5 and C5' position showed good reactivity and selectivity.
  • 加载中
    1. [1]

      Odonnell, M. J.; Bennett, W. D.; Wu, S. D. J. Am. Chem. Soc. 1989, 111, 2353.  doi: 10.1021/ja00188a089

    2. [2]

      Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414.  doi: 10.1021/ja973174y

    3. [3]

      Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595.
       

    4. [4]

      Jew, S. S.; Jeong, B. S.; Yoo, M. S.; Huh, H.; Park, H. G. Chem. Commun. 2001, 1244.
       

    5. [5]

      Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.  doi: 10.1021/ol016567h

    6. [6]

      Kita, T.; Georgieva, A.; Hashimoto, Y.; Nakata, T.; Nagasawa, K. Angew. Chem., Int. Ed. 2002, 41, 2832.  doi: 10.1002/1521-3773(20020802)41:15<2832::AID-ANIE2832>3.0.CO;2-Q

    7. [7]

      Liu, X.; Dong, S.; Lin, L.; Feng, X. Chin. J. Chem. 2018, 36, 791.  doi: 10.1002/cjoc.201800155

    8. [8]

      Wang, P.-S.; Chen, D.-F.; Gong, L.-Z. Top. Curr. Chem. 2019, 378, 9.
       

    9. [9]

      Tang, Q.; Fu, K.; Ruan, P.; Dong, S.; Su, Z.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2019, 58, 11846.  doi: 10.1002/anie.201905533

    10. [10]

      You, S.; Cheng, Y.-Z.; Zhao, Q.-R.; Zhang, X.; You, S.-L. Angew. Chem., Int. Ed. 2019, 58, 18069.  doi: 10.1002/anie.201911144

    11. [11]

      Li, S.; Xiang, S.-H.; Tan, B. Chin. J. Chem. 2020, 38, 213.
       

    12. [12]

      Yang, G.; Zhang, W. Chem. Soc. Rev. 2018, 47, 1783.  doi: 10.1039/C7CS00615B

    13. [13]

      Wang, H. Catalysts 2019, 9, 244.
       

    14. [14]

      Guo, W.; Liu, X.; Liu, Y.; Li, C. ACS Catal. 2018, 8, 328.
       

    15. [15]

      Qian, D.; Sun, J. Chem.-Eur. J. 2019, 25, 3740.  doi: 10.1002/chem.201803752

    16. [16]

      Jiang, F.; Chen, K.-W.; Wu, P.; Zhang, Y.-C.; Shi, F.; Jiao, Y.; Jiang, F.; Chen, K.-W.; Wu, P.; Zhang, Y.-C.; Jiao, Y.; Shi, F. Angew. Chem., Int. Ed. 2019, 58, 15104  doi: 10.1002/anie.201908279

    17. [17]

      Park, H. G.; Jeong, B. S.; Yoo, M. S.; Lee, J. H.; Park, M. K.; Lee, Y. J.; Kim, M. J.; Jew, S. S. Angew. Chem., Int. Ed. 2002, 41, 3036.  doi: 10.1002/1521-3773(20020816)41:16<3036::AID-ANIE3036>3.0.CO;2-3

    18. [18]

      Belokon, Y. N.; Bespalova, N. B.; Churkina, T. D.; Cisarova, I.; Ezernitskaya, M. G.; Harutyunyan, S. R.; Hrdina, R.; Kagan, H. B.; Kocovsky, P.; Kochetkov, K. A.; Larionov, O. V.; Lyssenko, K. A.; North, M.; Polasek, M.; Peregudov, A. S.; Prisyazhnyuk, V. V.; Vyskocil, S. J. Am. Chem. Soc. 2003, 125, 12860.  doi: 10.1021/ja035465e

    19. [19]

      Lygo, B.; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518.  doi: 10.1021/ar030058t

    20. [20]

      O'Donnell, M. J. Acc. Chem. Res. 2004, 37, 506.  doi: 10.1021/ar0300625

    21. [21]

      Kitamra, M.; Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2005, 44, 1549.  doi: 10.1002/anie.200462257

    22. [22]

      Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 1999, 121, 6519.  doi: 10.1021/ja991062w

    23. [23]

      Ooi, T.; Takeuchi, M.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228.  doi: 10.1021/ja0007051

    24. [24]

      Ooi, T.; Takahashi, M.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2002, 124, 7640.  doi: 10.1021/ja0118791

    25. [25]

      Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 5139.  doi: 10.1021/ja021244h

    26. [26]

      Ooi, T.; Takeuchi, M.; Kato, D.; Uematsu, Y.; Tayama, E.; Sakai, D.; Maruoka, K. J. Am. Chem. Soc. 2005, 127, 5073.  doi: 10.1021/ja0459328

    27. [27]

      Shirakawa, S.; Yamamoto, K.; Kitamura, M.; Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. 2005, 44, 625.  doi: 10.1002/anie.200462035

    28. [28]

      Freedman, H. H. Pure Appl. Chem. 1986, 58, 857.  doi: 10.1351/pac198658060857

    29. [29]

      Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656.  doi: 10.1021/cr068368n

    30. [30]

      Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312.  doi: 10.1002/anie.201206835

    31. [31]

      Hashimoto, T.; Sakata, K.; Tamakuni, F.; Dutton, M. J.; Maruoka, K. Nat. Chem. 2013, 5, 240.  doi: 10.1038/nchem.1567

    32. [32]

      Inukai, T.; Kano, T.; Maruoka, K. Angew. Chem., Int. Ed. 2020, 59, 2211.  doi: 10.1002/anie.201913518

    33. [33]

      Wang, Y.; Ye, J.; Liang, X. Adv. Synth. Catal. 2007, 349, 1033.  doi: 10.1002/adsc.200600592

    34. [34]

      Wang, Y.-G.; Maruoka, K. Org. Process Res. Dev. 2007, 11, 628.  doi: 10.1021/op0602324

    35. [35]

      Wang, Y.-G.; Ueda, M.; Wang, X.; Han, Z.; Maruoka, K. Tetrahedron 2007, 63, 6042.  doi: 10.1016/j.tet.2007.02.079

    36. [36]

      Ooi, T.; Uematsu, Y.; Kameda, M.; Maruoka, K. Angew. Chem., Int. Ed. 2002, 41, 1551.  doi: 10.1002/1521-3773(20020503)41:9<1551::AID-ANIE1551>3.0.CO;2-L

    37. [37]

      He, R.; Wang, X.; Hashimoto, T.; Maruoka, K. Angew. Chem., Int. Ed. 2008, 47, 9466.  doi: 10.1002/anie.200804140

    38. [38]

      He, R.; Ding, C.; Maruoka, K. Angew. Chem., Int. Ed. 2009, 48, 4559.
       

    39. [39]

      He, R.; Shirakawa, S.; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 16620.  doi: 10.1021/ja906821y

    40. [40]

      Liu, Y.; Usui, A.; Shirakawa, S.; Maruoka, K. Asian J. Org. Chem. 2012, 1, 180.  doi: 10.1002/ajoc.201200039

    41. [41]

      Shirakawa, S.; Liu, Y.; Usui, A.; Maruoka, K. ChemCatChem 2012, 4, 980.  doi: 10.1002/cctc.201200081

    42. [42]

      Ooi, T.; Fujioka, S.; Maruoka, K. J. Am. Chem. Soc. 2004, 126, 11790.  doi: 10.1021/ja047047v

    43. [43]

      Kano, T.; Yamaguchi, Y.; Maruoka, K. Angew. Chem., Int. Ed. 2009, 48, 1838.  doi: 10.1002/anie.200805628

    44. [44]

      Kano, T.; Sakamoto, R.; Yamaguchi, Y.; Itoh, K.; Maruoka, K. Chem. Commun. 2013, 49, 1118.  doi: 10.1039/c2cc38370e

    45. [45]

      Kano, T.; Maruyama, H.; Akiyama, K.; Maruoka, K. Tetrahedron Lett. 2014, 55, 4227.  doi: 10.1016/j.tetlet.2014.05.049

    46. [46]

      Kano, T.; Kobayashi, R.; Maruoka, K. Angew. Chem., Int. Ed. 2015, 54, 8471.  doi: 10.1002/anie.201502215

    47. [47]

      Liu, Y.; Arumugam, N.; Almansour, A. I.; Kumar, R. S.; Maruoka, K. Chem. Rec. 2017, 17, 1059.  doi: 10.1002/tcr.201700008

    48. [48]

      Ooi, T.; Taniguchi, M.; Kameda, M.; Maruoka, K. Angew. Chem., Int. Ed. 2002, 41, 4542.  doi: 10.1002/1521-3773(20021202)41:23<4542::AID-ANIE4542>3.0.CO;2-3

    49. [49]

      Ooi, T.; Kameda, M.; Taniguchi, M.; Maruoka, K. J. Am. Chem. Soc. 2004, 126, 9685.  doi: 10.1021/ja048865q

    50. [50]

      Ooi, T.; Maruoka, K. Acc. Chem. Res. 2004, 37, 526.  doi: 10.1021/ar030060k

    51. [51]

      Kano, T.; Yamamoto, A.; Song, S.; Maruoka, K. Bull. Chem. Soc. Jpn. 2011, 84, 1057.  doi: 10.1246/bcsj.20110155

    52. [52]

      Kano, T.; Yamamoto, A.; Song, S.; Maruoka, K. Chem. Commun. 2011, 47, 4358.  doi: 10.1039/c0cc05786j

    53. [53]

      Ooi, T.; Uematsu, Y.; Maruoka, K. J. Am. Chem. Soc. 2006, 128, 2548.
       

    54. [54]

      Ooi, T.; Uematsu, Y.; Fujimoto, J.; Fukumoto, K.; Maruoka, K. Tetrahedron Lett. 2007, 48, 1337.  doi: 10.1016/j.tetlet.2006.12.122

    55. [55]

      Wang, Y.-G.; Kumano, T.; Kano, T.; Maruoka, K. Org. Lett. 2009, 11, 2027.  doi: 10.1021/ol900477x

    56. [56]

      Wang, Y.-G.; Mii, H.; Kano, T.; Maruoka, K. Bioorg. Med. Chem. Lett. 2009, 19, 3795.  doi: 10.1016/j.bmcl.2009.04.025

    57. [57]

      Kubota, Y.; Shirakawa, S.; Inoue, T.; Maruoka, K. Tetrahedron Lett. 2012, 53, 3739.
       

    58. [58]

      Shirakawa, S.; Yamamoto, K.; Maruoka, K. Angew. Chem., Int. Ed. 2015, 54, 838.  doi: 10.1002/anie.201409065

    59. [59]

      Kubota, Y.; Shirakawa, S.; Inoue, T.; Maruoka, K. Tetrahedron Lett. 2012, 53, 3739.  doi: 10.1016/j.tetlet.2012.04.127

    60. [60]

      Kozel, V.; Daniliuc, C. D.; Kirsch, P.; Haufe, G. Angew. Chem., Int. Ed. 2017, 56, 15456.  doi: 10.1002/anie.201709279

    61. [61]

      Costantino, A. R.; Ocampo, R. A.; Montiel Schneider, M. G.; Fernandez, G.; Koll, L. C.; Mandolesi, S. D. Synth. Commun. 2013, 43, 3192.  doi: 10.1080/00397911.2013.774017

    62. [62]

      Hattori, T.; Shimazumi, Y.; Goto, H.; Yamabe, O.; Morohashi, N.; Kawai, W.; Miyano, S. J. Org. Chem. 2003, 68, 2099.  doi: 10.1021/jo026747k

    63. [63]

      Edsall, R. J.; Harris, H. A.; Manas, E. S.; Mewshaw, R. E. Bioorg. Med. Chem. 2003, 11, 3457.Bai, S.; Li, S.; Xu, J.; Peng, X.; Sai, K.; Chu, W.; Tu, Z.; Zeng, C.; Mach, R. H. J. Med. Chem. 2014, 57, 4239.  doi: 10.1016/S0968-0896(03)00303-1

    64. [64]

      Bai, S.; Li, S.; Xu, J.; Peng, X.; Sai, K.; Chu, W.; Tu, Z.; Zeng, C.; Mach, R. H. J. Med. Chem. 2014, 57, 4239.
       

  • 加载中
    1. [1]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    8. [8]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    11. [11]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    12. [12]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(12)
  • Abstract views(1308)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return