Citation: Li Shengnan, Zhao Wenxin, Liu Yujing, Liu Zhongqiu, Ying Anguo. Research Progress in the Application of Supported Functional Ionic Liquids in Organic Transformations[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1835-1846. doi: 10.6023/cjoc202003010 shu

Research Progress in the Application of Supported Functional Ionic Liquids in Organic Transformations

  • Corresponding author: Liu Zhongqiu, liuzhongqiuzs@126.com Ying Anguo, yinganguo@163.com
  • Received Date: 5 March 2020
    Revised Date: 9 April 2020
    Available Online: 30 April 2020

    Fund Project: Project supported by the National Natural Science Foundation of China 21576176Project supported by the National Natural Science Foundation of China 21978154The National Students' Platform for Innovation and Entrepreneurship Training Programs 201910446018Project supported by the National Natural Science Foundation of China (Nos. 21978154, 21576176) and the National Students' Platform for Innovation and Entrepreneurship Training Programs (No. 201910446018)

Figures(13)

  • Ionic liquids (ILs) have been widely used because of their excellent physical and chemical properties, and environment-friendly properties. However, the high viscosity of ILs causes difficulties in post-reaction separation and low recyclability. As the combination of ionic liquids with a variety of solid materials, supported functional ILs (SFILs) have the coupled advantages of ILs and loaded materials. It has a wide range of applications in the field of catalysis because of its high recovery performance, green economy and high efficiency. This paper mainly reviews the recent achievements over SFILs in respects of the preparation of ILs supported on various carriers like magnetic nanoparticles, graphene oxide, molecular sieves, organic-metal skeleton etc., the applications as the heterogeneous catalysts to organic transformations, and the understanding of the catalytic mechanism.
  • 加载中
    1. [1]

      Wasserschied, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772.
       

    2. [2]

      Watanabe, M.; Morgan, L. T.; Zhang, S.-G.; Ueno K.; Yasuda T.; Dokko, K. Chem. Rev. 2017, 117, 7190.  doi: 10.1021/acs.chemrev.6b00504

    3. [3]

      Zeng, S.-J.; Zhang, X.-P.; Bai, L.; Zhang, X.-C.; Wang, H.; Wang, J.-J.; Bao, D.; Li, M.-D.; Liu, X.-Y.; Zhang, S.-J. Chem. Rev. 2017, 117, 9625.  doi: 10.1021/acs.chemrev.7b00072

    4. [4]

      Zhou, Y.; Qu, J. ACS Appl. Mater. Inter. 2017, 9, 3029.
       

    5. [5]

      Abhijeet, P.; Bapat.; Robert, E.; Bryan, T.; Seymour.; Zhao, B.; Cosimbescu, L. Eur. Polym. J. 2018, 108, 38.
       

    6. [6]

      Karimi, B.; Vahdati, S.; Vali, H. RSC Adv. 2016, 6, 63717.  doi: 10.1039/C6RA15483B

    7. [7]

      Karimi, B.; Khorasani, M.; Naderi, Z.; Mirzaei, H. M.; Vali, H. ChemCatChem 2016, 8, 906.  doi: 10.1002/cctc.201501229

    8. [8]

      García, J, I.; Herrerías, C. I.; López-Sánchez, B.; Mayoral, J.A.; Miñ ana, A. C. Tetrahedron:Asymmetry 2014, 25, 833.  doi: 10.1016/j.tetasy.2014.04.017

    9. [9]

      Giacalone, F.; Gruttadauria, M. ChemCatChem 2016, 8, 664.  doi: 10.1002/cctc.201501086

    10. [10]

      Mehnert, C. P. Chem. Eur. J. 2005, 11, 50.  doi: 10.1002/chem.200400683

    11. [11]

      Van, D. C.; Wahlen, J.; Mertens, P.; Binnemans, K.; Vos, D. D. Dalton Trans. 2010, 39, 8377.  doi: 10.1039/c001285h

    12. [12]

      Giacalone, F.; Gruttadauria, M. ChemCatChem 2016, 8, 664.  doi: 10.1002/cctc.201501086

    13. [13]

      Xu, J.; Xu, M.; Wu, J.; Wu, H.; Zhang, W.-H.; Li, Y.-X. RSC Adv. 2015, 5, 72361.  doi: 10.1039/C5RA13533H

    14. [14]

      Xu, B.-H.; Wang, J.-Q.; Sun, J.; Huang, Y.; Zhang, J.-P.; Zhang, X.-P.; Zhang, S.-J. Green Chem. 2015, 17, 108.  doi: 10.1039/C4GC01754D

    15. [15]

      Mehnert, C. P. Chem. Eur. J. 2005, 11, 50.  doi: 10.1002/chem.200400683

    16. [16]

      Zheng, X.-X.; Luo, S.-Z.; Zhang, L.; Cheng, J.-P. Green Chem. 2009, 11, 455.  doi: 10.1039/b823123k

    17. [17]

      Karimi, B.; Mansouriand, F.; Vali, H. Green Chem. 2014, 16, 2587.  doi: 10.1039/c3gc42311e

    18. [18]

      Yang, J.-B.; Zhou, L.-H.; Guo, X.-T.; Li, L.; Zhang, P.; Hong, R.-Y.; Qiu, T. Chem. Eng. J. 2015, 280, 147.
       

    19. [19]

      Wang, B.; Zhang, J.; Zou, X.; Dong, H.; Yao, P. Chem. Eng. J. 2015, 260, 172.  doi: 10.1016/j.cej.2014.08.076

    20. [20]

      Severa, G.; Bethune, K.; Rocheleau, R.; Higgins, S. Chem. Eng. J. 2015, 26, 249.
       

    21. [21]

      Askalany, A. A.; Freni, A.; Santori, G. Desalination 2019, 452, 258.  doi: 10.1016/j.desal.2018.11.002

    22. [22]

      Jebur, M.; Sengupta, A.; Chiao, Y. H.; Kamaz, M.; Qian, X.-H.; Wickramasinghe, R. J. Membr. Sci. 2018, 556, 1.  doi: 10.1016/j.memsci.2018.03.064

    23. [23]

      Zhu, J.-M.; He, B.-T.; Huang, J.-H.; Li, C.-C.; Ren, T. Microporous Mesoporous Mater. 2018, 260, 190.  doi: 10.1016/j.micromeso.2017.10.035

    24. [24]

      Uehara, Y.; Karami, D.; Mahinpey, N. Energy Fuels 2018, 32, 5345.  doi: 10.1021/acs.energyfuels.8b00190

    25. [25]

      Mendes, T. C.; Zhang, X-M.; Wu, Y-T.; Howlett, P. C.; Forsyth, M.; Macfarlan, D. R. ACS Sustainable Chem. Eng. 2019, 7, 3722.  doi: 10.1021/acssuschemeng.8b06212

    26. [26]

      Mehnert, C. P.; Mozeleski, E. J.; Cook, R. A. Chem. Commun. 2002, 3010.
       

    27. [27]

      Lee, C.; Sandig, B.; Buchmeiser, M. R.; Haumann, M. Catal. Sci. Technol. 2018, 8, 2460.  doi: 10.1039/C8CY00089A

    28. [28]

      Oriol, M. F.; Chacón, G.; Bernardi, F.; Grehl, T.; Brüner, P.; Dupont, J. Catal. Sci. Technol. 2018, 8, 3081.  doi: 10.1039/C8CY00749G

    29. [29]

      Ying, A.-G.; Hou, H.-L.; Liu, S.; Chen, G.; Yang, J.-G.; Xu, S.-L. ACS Sustainable Chem. Eng. 2016, 4, 625.

    30. [30]

      Ying, A.-G.; Liu, S.; Li, Z.-F.; Chen, G.; Yang, J.-G.; Yan, H.; Xu, S.-L. Adv. Synth. Catal. 2016, 358, 2116.  doi: 10.1002/adsc.201600145

    31. [31]

      Li, Z.-F.; Hu, H.-N.; Jin, Y.-X.; Li, R.-R.; Ying, A.-G.; Xu, S.-L. Curr. Org. Synth. 2015, 12, 467.
       

    32. [32]

      Ying, A.-G.; Liu, S.; Ni, Y.-X.; Qiu, F.-L.; Xu, S.-L.; Tang, W.-Y. Catal. Sci. Technol. 2014, 4, 2115.  doi: 10.1039/C4CY00232F

    33. [33]

      Abolfazl, A.; Samiei, M.; Davaran, S. Nanoscale Res. Lett. 2012, 7, 144.  doi: 10.1186/1556-276X-7-144

    34. [34]

      Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J. M. Chem. Rev. 2011, 111, 3036.  doi: 10.1021/cr100230z

    35. [35]

      Gawande, M. B.; Branco, P. S.; Varma, R. S. Chem. Soc. Rev. 2013, 42, 3371.  doi: 10.1039/c3cs35480f

    36. [36]

      Baig, R. N.; Varma, R. S. Green Chem. 2013, 15, 398.  doi: 10.1039/C2GC36455G

    37. [37]

      Sadeghzadeh, S. M.; Daneshfar, F.; Malekzadeh, M. Chin. J. Chem. 2014, 32, 349.  doi: 10.1002/cjoc.201400007

    38. [38]

      Lee, J.; Chung, J.; Byun, S. M.; Kim, B. M.; Lee, C. Tetrahedron 2013, 69, 5660.  doi: 10.1016/j.tet.2013.04.031

    39. [39]

      Hu, H.; Liu, S.; Lin, W. RSC Adv. 2012, 2, 2576.  doi: 10.1039/c2ra01073a

    40. [40]

      Estakhri, E. Nasr-Esfahani, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V. Appl. Organomet. Chem. 2017, 31, 3799.
       

    41. [41]

      Teimuri-Mofrad, R.; Esmati, S.; Rabiei, M.; Gholamhosseini-Nazari, M. Heterocycl. Commun. 2017, 23, 439.

    42. [42]

      Zohreh, N.; Tavakolizadeh, M.; Hosseini, S. H.; Pourjavadi, A.; Bennett, C. Polymer 2017, 112, 342.  doi: 10.1016/j.polymer.2017.02.028

    43. [43]

      Eigler, S.; Hirsch, A. Angew. Chem., Int. Ed. 2014, 53, 7720.
       

    44. [44]

      Gómez-Navarro, C.; Burghard, M.; Kern, K. Nano Lett. 2008, 8, 2045.
       

    45. [45]

      Saptal, V. B.; Sasaki, T.; Harada, K.; Nishio-Hamane, D.; Bhanage, B. M. ChemSusChem 2016, 9, 644.  doi: 10.1002/cssc.201501438

    46. [46]

      Shaygan, N. A.; Rana, S.; Dohler, D.; Jirsa, F.; Meister, A.; Guadagno, L.; Koslowski, E.; Bron, M.; Binder, W, H. Chem.-Eur. J. 2015, 21, 10763.  doi: 10.1002/chem.201501217

    47. [47]

      Li, Z.; Zhang, W.; Zhao, Q.; Gu, H.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. ACS Sustainable Chem. E
       

    48. [48]

      Gaikwad, V. V.; Vitthal, B.; Saptal.; Harada, K.; Sasaki, T.; Daisuke, N. H.; Bhalchandra, M. B. ChemNanoMat 2015, 1, 489.  doi: 10.1002/cnma.201500065

    49. [49]

      Xue, B.; Liang, X.-Y.; Liu, N.; Xu, T.-C.; Xu, J.; Li, Y.-X. Colloids Surf., A 2018, 538, 534.  doi: 10.1016/j.colsurfa.2017.11.053

    50. [50]

      Sadjadi, S.; Heravi, M.; Raja, M. Int. J. Biol. Macromol. 2019, 122, 228.
       

    51. [51]

      Zhu, J.; Wang, S.-Q.; Gu, Y.-K.; Xue, B.; Li, Y.-X. Mater. Chem. Phys. 2018, 208, 68.  doi: 10.1016/j.matchemphys.2018.01.031

    52. [52]

      Dai, W.-L.; Chen, L.; Yin, S.-F.; Luo, S.-L.; Au, C.-T. Catal. Lett. 2010, 135.
       

    53. [53]

      Cheng, W.-G.; Chen, X.; Sun, J.; Wang, J.-Q.; Zhang, S.-J. Catal. Today 2013, 117.
       

    54. [54]

      Adam, F.; Appaturi, J. N.; Ng, E. J. Mol. Catal. A, Chem. 2014, 386, 42.  doi: 10.1016/j.molcata.2014.02.008

    55. [55]

      Yuan, C.; Huang, Z.; Chen, J. Catal. Commun. 2012, 24, 56.  doi: 10.1016/j.catcom.2012.03.003

    56. [56]

      Hu, Y.; Tang, S.; Jiang, L.; Zou, B.; Yang, J.; Huang, H. Proc. Biochem. 2012, 47, 2291.  doi: 10.1016/j.procbio.2012.09.007

    57. [57]

      Setyawan, H.; Balgis, R. Asia-Pac. J. Chem. Eng. 2012, 7, 448.  doi: 10.1002/apj.593

    58. [58]

      Yang, J-B.; Zeng, T.; Cai, D-R.; Li, L.; Tang, W-L.; Hong, R-Y.; Qiu, T. Asia-Pac. J. Chem. Eng. 2016, 11, 901.  doi: 10.1002/apj.2024

    59. [59]

      Guo, L.-Y.; Deng, L.-L.; Jin, X.-C.; Wu, H.; Yin, L-Z. Catal. Lett. 2017, 147, 2290.  doi: 10.1007/s10562-017-2137-y

    60. [60]

      Wang, Y.-Q.; Zhao, D.; Wang, L.-L.; Wang, X.-Q.; Li, L.-J.; Xing, Z.-P.; Ji, N.; Liu, S.-J.; Ding, H. Fuel 2018, 216, 364.  doi: 10.1016/j.fuel.2017.11.153

    61. [61]

      Hierro, I.; Pérez, Y.; Fajardo, M. M. Mesoporous Mater. 2018, 263, 173.  doi: 10.1016/j.micromeso.2017.12.024

    62. [62]

      Alcañ iz, J J.; Gascon J.; Kapteijn, F. J. Mater. Chem. 2012, 22, 10102.  doi: 10.1039/c2jm15563j

    63. [63]

      Dhakshinamoorthy, A.; Opanasenko, M.; Čejka, J.; Garcia, H. Catal. Sci. Technol. 2013, 3, 2509.

    64. [64]

      Tanabe, K. K.; Cohen, S. M. Inorg. Chem. 2010, 49, 6766.  doi: 10.1021/ic101125m

    65. [65]

      Valenzano, L.; Civalleri, B.; Chavan, S.; Palomino, G. T.; Areán, C. O.; Bordiga. S. J. Phys. Chem. C 2010, 114, 11185.  doi: 10.1021/jp909802c

    66. [66]

      Gao, W.-Y.; Chen, Y.; Niu, Y.; Williams, K.; Cash, L.; Perez P. J.; Wojtas, L.; Cai, J.; Chen, Y-S.; Ma, S. Angew. Chem. 2014, 126, 2653.

    67. [67]

      Liang, J.; Xie, Y.-Q.; Wang, X.-S.; Wang, Q.; Liu, T.-T.; Huang, Y.-B.; Cao, R. Chem. Commun. 2018, 54, 342.  doi: 10.1039/C7CC08630J

    68. [68]

      Shaabani, A.; Mohammadian, R.; Farhid, F.; Alavijeh, M. K.; Amini, M. M. Ind. Eng. Chem. Res. 2019, 58, 2784.  doi: 10.1021/acs.iecr.8b05846

    69. [69]

      Chong, S.-Y.; Wang, T.-T.; Cheng, L.-C.; Lv, H.-Y.; Ji, M. Langmuir 2019, 35, 495.  doi: 10.1021/acs.langmuir.8b03153

    70. [70]

      Liu, Y.-Z.; Ma, Y.-H.; Zhao, Y.-B.; Sun, X.-X.; Gándara, F.; Furukawa, H.; Liu, Z.; Zhu, H.-Y.; Zhu, C.-H.; Suenaga, K.; Oleynikov, P.; Alshammari, A. S.; Zhang, X.; Terasaki, O.; Yaghi, O. M. Science 2016, 351, 365.  doi: 10.1126/science.aad4011

    71. [71]

      Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.  doi: 10.1039/c2cs35157a

    72. [72]

      Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.  doi: 10.1039/C2CS35072F

    73. [73]

      Dogru, M.; Bein, T. Chem. Commun. 2014, 50, 5531.  doi: 10.1039/C3CC46767H

    74. [74]

      Liu, X.-H.; Guan, C.-Z.; Wang, D.; Wan, L.-J. Adv. Mater. 2014, 26, 6912.  doi: 10.1002/adma.201305317

    75. [75]

      Sun, L.; Boo, W. J.; Sue, H.-J.; Clearfield, A. New J. Chem. 2007, 31, 39.  doi: 10.1039/B604054C

    76. [76]

      Sun, L.-Y.; O'Reilly, J. Y.; Kong, D.-Y.; Su, J.-Y.; Boo, W. J.; Sue, H-J.; Clearfield, A. J. Colloid Interface Sci. 2009, 333, 503.  doi: 10.1016/j.jcis.2009.02.028

    77. [77]

      Tang, M.; Yang T.-S.; Zhang, Y. Sci. China, Technol. Sci. 2016, 59, 436.
       

    78. [78]

      Wei, S.-Y.; Lizu, M.; Zhang, X.; Sampathi, J.; Sun, L.-Y.; Milner, M. F. High Perform. Polym. 2013, 25, 25.  doi: 10.1177/0954008312454152

    79. [79]

      Zhou, Y.; Huang, R.; Ding, F.; Brittain, A. D.; Liu, J.; Zhang, M.; Xiao, M.; Meng, Y.; Sun, L. ACS Appl. Mater. Interfaces 2014, 6, 7417.  doi: 10.1021/am5008408

    80. [80]

      Zhou, Y.; Wang, A.; Wang, Z.; Chen, M.; Wang, W.; Sun, L.; Liu, X. RSC Adv. 2015, 5, 93969.  doi: 10.1039/C5RA16163K

    81. [81]

      Zhou, Y.; Liu, J.; Xiao, M.; Meng, Y.; Sun, L. ACS Appl. Mater. Interfaces 2016, 8, 5547.
       

    82. [82]

      He, X.; Xiao, H.; Choi, H.; Díaz, A.; Mosby, B.; Clearfield, A.; Liang, H. Colloids Surf. A 2014, 452, 32.  doi: 10.1016/j.colsurfa.2014.03.041

    83. [83]

      Gower, L. B. Chem. Rev. 2008, 108, 4551.  doi: 10.1021/cr800443h

    84. [84]

      Dash, M.; Chiellini, F.; Ottenbrite, R. M.; Chiellini, E. Prog. Polym. Sci. 2011, 36, 981.  doi: 10.1016/j.progpolymsci.2011.02.001

    85. [85]

      Ifuku, S.; Miwa, T.; Morimoto, M.; Saimotoa, H. Green Chem. 2011, 13, 1499.  doi: 10.1039/c0gc00860e

    86. [86]

      Chung, K.-H.; Cho, M. Y.; Sung, M.-H.; Poo, H.; Lim, Y. T. Chem. Commun. 2011, 47, 8889.  doi: 10.1039/c1cc11922b

    87. [87]

      Dong, B.; Wang, L-Y.; Zhao, S.; Ge, R-L.; Song, X.-D.; Wang, Y.; Gao, Y.-A. Chem. Commun. 2016, 52, 7082.  doi: 10.1039/C6CC03058K

    88. [88]

      Zhou, Y.-J.; Liu, J.-J.; Huang, R.-C.; Zhang, M.; Xiao, M.; Meng, Y.-Z.; Sun, L.-Y. Dalton Trans. 2017, 46, 13126.  doi: 10.1039/C7DT01510K

    89. [89]

      Sun, J.; Wang, J.-Q.; Cheng, W.-G.; Zhang, J.-X.; Li, X.-H.; Zhang, S.-J.; She, Y.-B. Green Chem. 2012, 14, 654.  doi: 10.1039/c2gc16335g

    90. [90]

      Nassor, E.; Mambrini, R. V.; Santos, E.; Moura, F.; Araujo, M. H. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2288.  doi: 10.1007/s10904-018-0911-y

    91. [91]

      Zhang, M.-J.; Tang, Z.-Y.; Fu, W.-Q.; Wang, W.-Y.; Tan, R.; Yin, D.-H. Chem. Commun. 2019, 55, 592.  doi: 10.1039/C8CC08292H

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    4. [4]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    5. [5]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    6. [6]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    7. [7]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    8. [8]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    9. [9]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    10. [10]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    11. [11]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    12. [12]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    15. [15]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    16. [16]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    17. [17]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    18. [18]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Ruiyuan Xu Yuxin Wang Yuru Zhang Wanmei Li . Who Destroyed Snowflake Castle. University Chemistry, 2024, 39(9): 224-228. doi: 10.12461/PKU.DXHX202311056

Metrics
  • PDF Downloads(35)
  • Abstract views(2796)
  • HTML views(807)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return