Citation: Dong Xiaojuan, Jin Weiwei, Liu Chenjiang. Recent Advances in Transition-Metal Catalyzed Defunctionalization Reaction[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1860-1873. doi: 10.6023/cjoc202002038 shu

Recent Advances in Transition-Metal Catalyzed Defunctionalization Reaction

  • Corresponding author: Jin Weiwei, wwjin0722@163.com Liu Chenjiang, pxylcj@126.com
  • Received Date: 26 February 2020
    Revised Date: 10 April 2020
    Available Online: 23 April 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21702175, 21961037) and the 1000 Youth Talents PlanProject supported by the National Natural Science Foundation of China 21702175Project supported by the National Natural Science Foundation of China 21961037

Figures(33)

  • Functional groups are atoms or groups that determine the chemical properties of organic compounds. It often plays the role of guiding group in organic synthesis chemistry. Defunctionalization is the chemical transformation of a substrate with more functional groups into a compound with fewer functional groups, which has positive applications in solving environmental problems, resource shortage and biomass degradation. But due to the bond energy, heating, acid or base are often involved in defunctionalization. In recent years, defunctionalization has been moving toward a greener and more sustainable direction. Metal catalysis provides a new way for defunctionalization. The recent applications of different metal-mediated defunctionalization in organic synthesis and their mechanism are summarized.
  • 加载中
    1. [1]

      Modak, A.; Maiti, D. Org. Biomol. Chem. 2016, 14, 21.  doi: 10.1039/C5OB01949D

    2. [2]

      Verduyckt, J.; Van Hoof, M.; De Schouwer, F.; Wolberg, M.; Kurttepeli, M.; Eloy, P.; Gaigneaux, E. M.; Bals, S.; Kirschhock, C. E. A.; De Vos, D. E. ACS Catal. 2016, 6, 7303.  doi: 10.1021/acscatal.6b02561

    3. [3]

      Ferrini, P.; Chesi, C.; Parkin, N.; Rinaldi, R. Faraday Discuss. 2017, 202, 403.  doi: 10.1039/C7FD00069C

    4. [4]

      Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46, 5864.  doi: 10.1039/C7CS00182G

    5. [5]

      Matsubara, S.; Yokota, Y.; Oshima, K. Org. Lett. 2004, 6, 2071.  doi: 10.1021/ol0492602

    6. [6]

      Dickstein, J. S.; Mulrooney, C. A.; O'Brien, E. M.; Morgan, B. J.; Kozlowski, M. C. Org. Lett. 2007, 9, 2441.  doi: 10.1021/ol070749f

    7. [7]

      Ladwein, K. I.; Jung, M. Angew. Chem., Int. Ed. 2011, 50, 1214
       

    8. [8]

      Modak, A.; Naveen, T.; Maiti, D. Chem. Commun. 2013, 49, 252.  doi: 10.1039/C2CC36951F

    9. [9]

      Modak, A.; Deb, A.; Patra, T.; Rana, S.; Maity, S.; Maiti, D. Chem. Commun. 2012, 48, 4253.  doi: 10.1039/c2cc31144e

    10. [10]

      Akanksha; Maiti, D. Green Chem. 2012, 14, 2314.  doi: 10.1039/c2gc35622h

    11. [11]

      (a) Huang, Y.-B.; Yang, Z.; Chen, M.-Y.; Dai, J.-J.; Guo, Q.-X.; Fu, Y. ChemSusChem 2013, 6, 1348.
      (b) Chatterjee, M.; Ishizaka, T.; Kawanami, H. Green Chem. 2018, 20, 2345.

    12. [12]

      Li, W.-H.; Li, C.-Y.; Li, Y.; Tang, H.-T.; Wang, H.-S.; Pan, Y.-M.; Ding, Y.-J. Chem. Commun. 2018, 54, 8446.  doi: 10.1039/C8CC03109F

    13. [13]

      Ogiwara, Y.; Sakurai, Y.; Hattori, H.; Sakai, N. Org. Lett. 2018, 20, 4204.  doi: 10.1021/acs.orglett.8b01582

    14. [14]

      Dawes, G. J. S.; Scott, E. L.; Le NÔ tre, J.; Sanders, J. P. M.; Bitter, J. H. Green Chem. 2015, 17, 3231.  doi: 10.1039/C5GC00023H

    15. [15]

      Si, Y.-G.; Gardner, M. P.; Tarazi, F. I.; Baldessarini, R. J.; Neumeyer, J. L. J. Med. Chem. 2008, 51, 983.

    16. [16]

      Cao, D.; Zeng, H.; Li, C.-J. ACS Catal. 2018, 8, 8873.  doi: 10.1021/acscatal.8b02214

    17. [17]

      Sawadjoon, S.; Lundstedt, A.; Samec, J. S. M. ACS Catal. 2013, 3, 635.  doi: 10.1021/cs300785r

    18. [18]

      Ritter, K. Synthesis 1993, 735.
       

    19. [19]

      Pan, Y.; Holmes, C. P. Org. Lett. 2001, 3, 2769.  doi: 10.1021/ol0163732

    20. [20]

      Sajiki, H.; Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Hirota, K. Org. Lett. 2006, 8, 987.  doi: 10.1021/ol060045q

    21. [21]

      Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chem.-Eur. J. 2007, 13, 1432.  doi: 10.1002/chem.200601184

    22. [22]

      Hupp, C. D.; Neumeyer, J. L. Tetrahedron Lett. 2010, 51, 2359.  doi: 10.1016/j.tetlet.2010.02.146

    23. [23]

      Chow, W. K.; So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Chem. Front. 2014, 1, 464.  doi: 10.1039/C4QO00103F

    24. [24]

      Graham, T. H.; Liu, W.; Shen, D.-M. Org. Lett. 2011, 13, 6232.  doi: 10.1021/ol2026813

    25. [25]

      Matsumura, T.; Niwa, T.; Nakada, M. Tetrahedron Lett. 2012, 53, 4313.  doi: 10.1016/j.tetlet.2012.06.002

    26. [26]

      Matsumura, T.; Nakada, M. Tetrahedron Lett. 2014, 55, 1412.  doi: 10.1016/j.tetlet.2014.01.022

    27. [27]

      Ishihara, S.; Ido, A.; Monguchi, Y.; Nagase, H.; Sajiki, H. J. Hazard. Mater. 2012, 229, 15.
       

    28. [28]

      Chelucci, G.; Baldino, S.; Ruiu, A. J. Org. Chem. 2012, 77, 9921.  doi: 10.1021/jo3019335

    29. [29]

      Kashihara, M.; Yadav, M. R.; Nakao, Y. Org. Lett. 2018, 20, 1655.  doi: 10.1021/acs.orglett.8b00430

    30. [30]

      Deng, G.; Chen, J.; Sun, W.; Bian, K.; Jiang, Y.; Loh, T.-P. Adv. Synth. Catal. 2018, 360, 3900.  doi: 10.1002/adsc.201800823

    31. [31]

      Patra, T.; Agasti, S.; Akanksha; Maiti, D. Chem. Commun. 2013, 49, 69.  doi: 10.1039/c2cc36883h

    32. [32]

      Patra, T.; Agasti, S.; Modak, A.; Maiti, D. Chem. Commun. 2013, 49, 8362.  doi: 10.1039/c3cc44562c

    33. [33]

      Enthaler, S.; Weidauer, M.; Irran, E.; Epping, J. D.; Kretschmer, R.; Someya, C. I. J. Organomet. Chem. 2013, 745, 262.
       

    34. [34]

      Crawford, J. M.; Shelton, K. E.; Reeves, E. K.; Sadarananda, B. K.; Kalyani, D. Org. Chem. Front. 2015, 2, 726.  doi: 10.1039/C5QO00040H

    35. [35]

      (a) Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2017, 139, 1416.
      (b) Somerville, R. J.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 6708.

    36. [36]

      Ding, K.; Shi, X.; Alotaibi, R.; Paudel, K.; Reinheimer, E. W.; Weatherly, J. J. Org. Chem. 2017, 82, 4924.  doi: 10.1021/acs.joc.7b00284

    37. [37]

      Yu, R.; Chen, X.; Martin, S. F.; Wang, Z. Org. Lett. 2017, 19, 1808.  doi: 10.1021/acs.orglett.7b00579

    38. [38]

      Yue, H.; Guo, L.; Lee, S.-C.; Liu, X.; Rueping, M. Angew. Chem., Int. Ed. 2017, 56, 3972.  doi: 10.1002/anie.201612624

    39. [39]

      Dey, A.; Sasmal, S.; Seth, K.; Lahiri, G. K.; Maiti, D. ACS Catal. 2017, 7, 433.  doi: 10.1021/acscatal.6b03040

    40. [40]

      Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586.  doi: 10.1021/jacs.7b11591

    41. [41]

      Herrmann, J. M.; Kö nig, B. Eur. J. Org. Chem. 2013, 2013, 7017.  doi: 10.1002/ejoc.201300657

    42. [42]

      Lipshutz, B. H.; Frieman, B. A.; Butler, T.; Kogan, V. Angew. Chem., Int. Ed. 2006, 45, 800.  doi: 10.1002/anie.200502887

    43. [43]

      Á lvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc. 2010, 132, 17352.  doi: 10.1021/ja106943q

    44. [44]

      Tobisu, M.; Yamakawa, K.; Shimasaki, T.; Chatani, N. Chem. Commun. 2011, 47, 2946.  doi: 10.1039/c0cc05169a

    45. [45]

      Cornella, J.; Gómez-Bengoa, E.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1997.  doi: 10.1021/ja311940s

    46. [46]

      Tobisu, M.; Morioka, T.; Ohtsuki, A.; Chatani, N. Chem. Sci. 2015, 6, 3410.  doi: 10.1039/C5SC00305A

    47. [47]

      Sergeev, A. G.; Hartwig, J. F. Science 2011, 332, 439.  doi: 10.1126/science.1200437

    48. [48]

      Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 20226.  doi: 10.1021/ja3085912

    49. [49]

      Li, J.; Wang, Z.-X. Chem. Commun. 2018, 54, 2138.  doi: 10.1039/C7CC09668B

    50. [50]

      Cao, Z.-C.; Shi, Z.-J. J. Am. Chem. Soc. 2017, 139, 6546.  doi: 10.1021/jacs.7b02326

    51. [51]

      Lipshutz, B. H.; Tomioka, T.; Sato, K. Synlett 2001, 970.
       

    52. [52]

      Barbero, N.; Martin, R. Org. Lett. 2012, 14, 796.  doi: 10.1021/ol2033306

    53. [53]

      Tobisu, M.; Nakamura, K.; Chatani, N. J. Am. Chem. Soc. 2014, 136. 5587.
       

    54. [54]

      Kreis, M.; Palmelund, A.; Bunch, L.; Madsen, R. Adv. Synth. Catal. 2006, 348, 2148.  doi: 10.1002/adsc.200600228

    55. [55]

      Fristrup, P.; Kreis, M.; Palmelund, A.; Norrby, P.-O.; Madsen, R. J. Am. Chem. Soc. 2008, 130, 5206.
       

    56. [56]

      Gutmann, B.; Elsner, P.; Glasnov, T.; Roberge, D. M.; Kappe, C. O. Angew. Chem., Int. Ed. 2014, 53, 11557.  doi: 10.1002/anie.201407219

    57. [57]

      Monrad, R. N.; Madsen, R. J. Org. Chem. 2007, 72, 9782.  doi: 10.1021/jo7017729

    58. [58]

      Brö ehmer, M. C.; Volz, N.; Brä ese, S. Synlett 2009, 1383.
       

    59. [59]

      Sun, Z.-M.; Zhang, J.; Manan, R. S.; Zhao, P. J. Am. Chem. Soc. 2010, 132, 6935.  doi: 10.1021/ja102575d

    60. [60]

      Whittaker, R. E.; Dong, G. Org. Lett. 2015, 17, 5504.  doi: 10.1021/acs.orglett.5b02911

    61. [61]

      Tobisu, M.; Nakamura, R.; Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 3174.  doi: 10.1021/ja810142v

    62. [62]

      Hooper, J. F.; Young, R. D.; Weller, A. S.; Willis, M. C. Chem.-Eur. J. 2013, 19, 3125.  doi: 10.1002/chem.201204056

    63. [63]

      Vandekerkhove, A.; Claes, L.; De Schouwer, F.; Van Goethem, C.; Vankelecom, I. F. J.; Lagrain, B.; De Vos, D. E. ACS Sustainable Chem. Eng. 2018, 6, 9218.  doi: 10.1021/acssuschemeng.8b01546

    64. [64]

      Chatani, N.; Tatamidani, H.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 4849.  doi: 10.1021/ja0103501

    65. [65]

      Tatamidani, H.; Yokota, K.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615.  doi: 10.1021/jo0492719

    66. [66]

      Mazziotta, A.; Madsen, R. Eur. J. Org. Chem. 2017, 2017, 5417.

    67. [67]

      Nishibayashi, Y.; Shinoda, A.; Miyake, Y.; Matsuzawa, H.; Sato, M. Angew. Chem., Int. Ed. 2006, 45, 4835.  doi: 10.1002/anie.200601181

    68. [68]

      Dai, X.-J.; Li, C.-J. J. Am. Chem. Soc. 2016, 138, 5433.  doi: 10.1021/jacs.6b02344

    69. [69]

      Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756.  doi: 10.1021/ja9033582

    70. [70]

      You, T.; Wang, Z.; Chen, J.; Xia, Y. J. Org. Chem. 2017, 82, 1340.  doi: 10.1021/acs.joc.6b02222

    71. [71]

    72. [72]

      Font, M.; Quibell, J. M.; Perry, G. J. P.; Larrosa, I. Chem. Commun. 2017, 53, 5584.  doi: 10.1039/C7CC01755C

    73. [73]

      Gooß en, L. J.; Thiel, W. R.; Rodríguez, N.; Linder, C.; Melzer, B. Adv. Synth. Catal. 2007, 349, 2241.  doi: 10.1002/adsc.200700223

    74. [74]

      Goossen, L. J.; Manjolinho, F.; Khan, B. A.; Rodríguez, N. J. Org. Chem. 2009, 74, 2620.  doi: 10.1021/jo802628z

    75. [75]

      Cahiez, G.; Moyeux, A.; Gager, O.; Poizat, M. Adv. Synth. Catal. 2013, 355, 790.  doi: 10.1002/adsc.201201018

    76. [76]

      Li, Z.; Fu, Z.; Zhang, H.; Long, J.; Songa, Y.; Cai, H. New J. Chem. 2016, 40, 3014.  doi: 10.1039/C5NJ02792F

    77. [77]

      Fichez, J.; Prestat, G.; Busca, P. Org. Lett. 2018, 20, 2724.  doi: 10.1021/acs.orglett.8b00930

    78. [78]

      Nakazawa, H.; Kamata, K.; Itazaki, M. Chem. Commun. 2005, 36, 4004.
       

    79. [79]

      Yang, Z.; Kumar, R. K.; Liao, P.; Liu, Z.; Li, X.; Bi, X. Chem. Commun. 2016, 52, 5936.  doi: 10.1039/C5CC10518H

    80. [80]

      Iwai, T.; Fujihara, T.; Tsuji, Y. Chem. Commun. 2008, 46, 6215.
       

    81. [81]

      Huang, J.-L.; Dai, X.-J.; Li, C.-J. Eur. J. Org. Chem. 2013, 2013, 6496.  doi: 10.1002/ejoc.201301293

    82. [82]

      Yang, S.; Tang, W.; Yang, Z.; Xu, J. ACS Catal. 2018, 8, 9320.  doi: 10.1021/acscatal.8b02495

    83. [83]

      Nguyen, J. D.; Matsuura, B. S.; Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 1218.  doi: 10.1021/ja4113462

    84. [84]

      Lu, P.; Sanchez, C.; Cornella, J.; Larrosa, I. Org. Lett. 2009, 11, 5710.  doi: 10.1021/ol902482p

    85. [85]

      Grainger, R.; Nikmal, A.; Cornella, J.; Larrosa, I. Org. Biomol. Chem. 2012, 10, 3172.  doi: 10.1039/c2ob25157d

    86. [86]

      Seo, S.; Taylor, J. B.; Greaney, M. F. Chem. Commun. 2012, 48, 8270.  doi: 10.1039/c2cc33306f

    87. [87]

      Liao, R.-Z.; Chen, S.-L.; Siegbahn, P. E. M. ACS Catal. 2015, 5, 7350.  doi: 10.1021/acscatal.5b01502

    88. [88]

      Ren, Y.-L.; Tian, M.; Tian, X.-Z.; Wang, Q.; Shang, H.; Wang, J.; Zhang, Z. C. Catal. Commun. 2014, 52, 36.  doi: 10.1016/j.catcom.2014.03.036

    89. [89]

      (a) Zhang, L.; Koreeda, M. J. Am. Chem. Soc. 2004, 126, 13190.(b) Jordan, P. A.; Miller, S. J. Angew. Chem., Int. Ed. 2012, 51, 2907.

    90. [90]

      García, N.; García-García, P.; Fernández-Rodríguez, M. A.; Rubio, R.; Pedrosa, M. R.; Arnáiz, F. J.; Sanz, R. Adv. Synth. Catal. 2012, 354, 321.  doi: 10.1002/adsc.201100877

    91. [91]

      Sousa, S. C. A.; Fernandes, T. A.; Fernandes, A. C. Eur. J. Org. Chem. 2016, 2016, 3109.  doi: 10.1002/ejoc.201600441

    92. [92]

      (a) Dupuy, S.; Lazreg, F.; Slawin, A. M. Z.; Cazin, C. S. J.; Nolan, S. P. Chem. Commun. 2011, 47, 5455.
      (b) Dupuy, S.; Nolan, S. P. Chem.-Eur. J. 2013, 19, 14034.

    93. [93]

      Yasuda, M.; Onishi, Y.; Ueba, M.; Miyai, T.; Baba, A. J. Org. Chem. 2001, 66, 7741.
       

    94. [94]

      Miura, K.; Tomita, M.; Yamada, Y.; Hosomi, A. J. Org. Chem. 2007, 72, 787.  doi: 10.1021/jo061880o

    95. [95]

      Bauer, J. O.; Chakraborty, S.; Milstein, D. ACS Catal. 2017, 7, 4462.  doi: 10.1021/acscatal.7b01729

    96. [96]

      Zou, Y.-Q.; Chakraborty, S.; Nerush, A.; Oren, D.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. ACS Catal. 2018, 8, 8014.  doi: 10.1021/acscatal.8b02902

    97. [97]

      Moseley, J. D.; Gilday, J. P. Tetrahedron 2006, 62, 4690.  doi: 10.1016/j.tet.2005.12.064

    98. [98]

      Diéguez, H. R.; López, A.; Domingo, V.; Arteaga, J. F.; Dobado, J. A.; Herrador, M. M.; Quílez del Moral, J. F.; Barrero, A. F. J. Am. Chem. Soc. 2010, 132, 254.  doi: 10.1021/ja906083c

    99. [99]

      Meyer, V. J.; Niggemann, M. Chem.-Eur. J. 2012, 18, 4687.  doi: 10.1002/chem.201103691

    100. [100]

      Li, P.; Ma, N.; Wang, Z.; Dai, Q.; Hu, C. J. Org. Chem. 2018, 83, 8233.  doi: 10.1021/acs.joc.8b00970

    101. [101]

      Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. J. Org. Chem. 2000, 65, 6179.  doi: 10.1021/jo000726d

    102. [102]

      Chandrasekhar, S.; Reddy, C. R.; Babu, B. N. J. Org. Chem. 2002, 67, 9080.  doi: 10.1021/jo0204045

    103. [103]

      Milne, J. E.; Storz, T.; Colyer, J. T.; Thiel, O. R.; Seran, M. D.; Larsen, R. D.; Murry, J. A. J. Org. Chem. 2011, 76, 9519.
       

    104. [104]

      Wang, Y. P.; Liu, Y. H.; Ruan, R. S.; Wan, Y. Q.; Zhang, J. S.; Peng, H. Acta Chim. Sinica 2012, 70, 114(in Chinese).  doi: 10.3969/j.issn.0251-0790.2012.01.019

    105. [105]

      Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2015, 137, 11340.  doi: 10.1021/jacs.5b07770

    106. [106]

      Yang, W.; Gao, L.; Lu, J.; Song, Z. Chem. Commun. 2018, 54, 4834.  doi: 10.1039/C8CC01163J

    107. [107]

      Liu, D.; Sun, J.; Simmons, B. A.; Singh, S. ACS Sustainable Chem. Eng. 2018, 6, 7232.  doi: 10.1021/acssuschemeng.7b03612

    108. [108]

      Zhao, X.; Zheng, X.; Yang, B.; Sheng, J.; Lu, K. Org. Biomol. Chem. 2018, 16, 1200.  doi: 10.1039/C7OB02834B

    109. [109]

      Fukuyama, T.; Fujita, Y.; Miyoshi, H.; Ryu, I.; Kao, S.-C.; Wu, Y.-K. Chem. Commun. 2018, 54, 5582.  doi: 10.1039/C8CC02445F

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    10. [10]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

Metrics
  • PDF Downloads(33)
  • Abstract views(2782)
  • HTML views(704)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return