Citation: Dai Hongxue, Wu Fen, Bai Dachang. Recent Advances in Ni-Catalyzed C—C Bond Activation Reactions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1423-1436. doi: 10.6023/cjoc202002035 shu

Recent Advances in Ni-Catalyzed C—C Bond Activation Reactions

  • Corresponding author: Bai Dachang, baidachang@htu.edu.cn
  • Received Date: 25 February 2020
    Revised Date: 3 April 2020
    Available Online: 13 April 2020

    Fund Project: the Start-Up Fund from Henan Normal University 2019QK01the Natural Science Research Program of Education Department of Henan Province 18A150010the Start-Up Fund from Henan Normal University qd17108the National Natural Science Foundation of China 21801067Project supported by the National Natural Science Foundation of China (No. 21801067), the Natural Science Research Program of Education Department of Henan Province (No. 18A150010) and the Start-Up Fund from Henan Normal University (Nos. qd17108, 2019QK01)

Figures(30)

  • Transition-metal catalyzed C-C bond cleavage reaction is one of the most challenge topics, and has drawn considerable attention in recent years. This process has not only emerged as a useful strategy for syntheses of complex molecular skeletons, but also satisfied atom economy. Compared to the noble transition metals catalysis such as Rh, Pd and Ir, the nickel catalysis offered a more cost effective option and exhibited unique activity or selectivity. This recent advances on the Ni-catalyzed C-C bond activations are summarized.
  • 加载中
    1. [1]

      Reviews: (a) Song, F.-J.; Gou, T.; Wang, B.-Q.; Shi, Z.-J. Chem. Soc. Rev. 2018, 47, 7078.
      (b) Deng, L.; Jin, L.; Dong, G. Angew. Chem., Int. Ed. 2018, 57, 2702.
      (c) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
      (d) Chen, P.-H.; Billett, B. A.; Tsukamoto, T.; Dong, G.-B. ACS Catal. 2017, 7, 1340.
      (e) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
      (f) Liu, H.; Feng, M.-H.; Jiang, X.-F. Chem.-Asian J. 2014, 9, 3360.
      (g) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610.
      (h) Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640.
      (i) Liu, J.-Z.; Qiu, X.; Huang, X.-Q.; Luo, X.; Zhang, C.; Wei, J.-L.; Pan, J.; Liang, Y.-J.; Zhu, Y.-C.; Qin, Q.-X.; Son, S.; Jiao, N. Nat. Chem. 2019, 11, 94.
      (j) Sivaguru, P.; Wang, Z.-K.; Zanoni, G.; Bi, X.-H. Chem. Soc. Rev. 2019, 48, 2615.
      (k) Wu, X.-X.; Zhu, C. Chem. Rec. 2018, 18, 587.

    2. [2]

      (a) Murakami, M.; Ishida, N. J. Am. Chem. Soc. 2016, 138, 13759.
      (b) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414.
      (c) Li, T.-F.; Xu, F.; Li, X.-C.; Wang, C.-X.; Wan, B.-S. Angew. Chem., Int. Ed. 2016, 55, 2861.
      (d) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
      (e) Chen, W.-L.; Wu, S.-Y.; Mo, X.-L.; Wei, L.-X.; Liang, C.; Mo, D.-L. Org. Lett. 2018, 20, 3527.
      (f) Zhao, H.-P; Liang, G.-C.; Nie, S.-M.; Lu, X.; Pan, C.-X.; Zhong, X.-X.; Su, G.-F.; Mo, D.-L. Green Chem. 2020, 22, 404.

    3. [3]

      (a) Dai, P.-F.; Ning, X.-S.; Wang, H.; Cui, X.-C.; Liu, J.; Qu, J.-P.; Kang, Y.-B. Angew. Chem., Int. Ed. 2019, 58, 5392.
      (b) Sun, T.-W.; Zhang, Y.-N.; Qiu, B.; Wang, Y.-F.; Qin, Y.-T.; Dong, G.-B.; Xu, T. Angew. Chem., Int. Ed. 2018, 57, 2859.
      (c) Cao, J.; Fang, R.; Liu, J.-Y.; Lu, H.; Luo, Y.-C.; Xu, P.-F. Chem.-Eur. J. 2018, 24, 18863.
      (d) Liu, L.-T.; Guo, Z.-H.; Xu, K.; Hui, S.-S.; Zhao, X.-F.; Zhao, B.-L.; Tan, H.; Chen, C.; Jiao, N.; Shi, Z.-Z. Chin. J Chem. 2018, 36, 995.
      (e) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
      (f) Mao, W.-B.; Zhu, C. J. Org. Chem. 2017, 82, 9133.

    4. [4]

      Selected examples on nickel catalyzed C—C cleavage: (a) Fan, C.; Lv, X.-Y.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2019, 141, 2889.
      (b) Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586.
      (c) Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2017, 139, 1416.
      (d) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348.
      (e) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2006, 45, 67880.
      (f) Ogoshi, S.; Nagata, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 5350.
      (g) Jiang, L.-H.; Huang, F.; Wang, Q.; Sun, C.-Z.; Liu, J.-B.; Chen, D.-Z. Org. Chem. Front. 2018, 5, 2332.

    5. [5]

      (a) Wiberg, K.; Waddell, S. T. J. Am. Chem. Soc. 1990, 112, 2194.
      (b) Yu, S. J.; Noble, A.; Bedford, R. B.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 20325.

    6. [6]

      (a) Nakamura, M.; Isobe, H.; Nakamura, E. Chem. Rev. 2003, 103, 1295.
      (b) Yang, Y.; Zhang, Z.; Zhang, X.; Wang, D.; Wei, Y.; Shi, M. Chem. Commun. 2014, 50, 115.
      (c) Li, X.; Han, C.; Yao, H.; Lin, A. Org. Lett. 2017, 19, 778.

    7. [7]

      Noyori, R.; Umeda, I.; Takaya H. Chem. Lett. 1972, 1, 1189.  doi: 10.1246/cl.1972.1189

    8. [8]

      (a) Baba, A.; Ohshiro, Y.; Agawa, T. Chem. Lett. 1976, 5, 11.
      (b) Baba, A.; Ohshiro, Y.; Agawa. T. J. Organomet. Chem. 1976, 110, 121.

    9. [9]

      Zhao, W.-T.; Gao, F.; Zhao, D.-B. Angew. Chem., Int. Ed. 2018, 57, 6329.  doi: 10.1002/anie.201803156

    10. [10]

      Huang, J. Q.; Ho, C. Y. Angew. Chem., Int. Ed. 2019, 58, 5702.  doi: 10.1002/anie.201901255

    11. [11]

      (a) Noyori, R.; Odagi, T.; Takaya, H. J. Am. Chem. Soc. 1970, 92, 5780.
      (b) Noyori, R.; Kumagai, Y.; Umeda, I.; Takaya, H. J. Am. Chem. Soc. 1972, 94, 4018.
      (c) Ma, X.-P.; Nong, C.-M.; Zhao, J.; Lu, X.; Liang, C.; Mo, D.-L. Adv. Synth. Catal. 2020, 362, 478.

    12. [12]

      (a) Saito, S.; Masuda, M.; Komagawa, S. J. Am. Chem. Soc. 2004, 126, 10540.
      (b) Saito, S.; Komagawa, S.; Azumaya, I.; Masuda, M. J. Org. Chem. 2007, 72, 9114.
      (c) Komagawa, S.; Saito, S. Angew. Chem., Int. Ed. 2006, 45, 2446.
      (d) Maeda, K.; Saito, S. Tetrahedron Lett. 2007, 48, 3173.
      (e) Saito, S.; Takeuchi, K. Tetrahedron Lett. 2007, 48, 595.

    13. [13]

      Saito, S.; Maeda, K.; Yamasaki, R.; Kitamura, T.; Nakagawa, M.; Kato, K.; Azumaya, I.; Masu, H. Angew. Chem., Int. Ed. 2010, 49, 1830.  doi: 10.1002/anie.200907052

    14. [14]

      Saito, S.; Yoshizawa, T.; Ishigami, S.; Yamasaki, R. Tetrahedron Lett. 2010, 51, 6028.  doi: 10.1016/j.tetlet.2010.09.031

    15. [15]

      (a) Saya, L.; Bhargava, G.; Navarro, M. A.; Gulías, M.; López, F.; Fernández, I.; Castedo, L.; Mascareñas, J. L. Angew. Chem., Int. Ed. 2010, 49, 9886.
      (b) Saya, L.; Fernández, I.; López, F.; Mascareñas, J. L. Org. Lett. 2014, 16, 5008.

    16. [16]

      Yao, B.; Li, Y.; Liang, Z.; Zhang, Y. Org. Lett. 2011, 13, 640.  doi: 10.1021/ol1028628

    17. [17]

      (a) Ogata, K.; Shimada, D.; Furuya, S.; Fukuzawa, S.-I. Org. Lett. 2013, 15, 1182.
      (b) Ogata, K.; Atsuumi, Y.; Fukuzawa, S.-I. Org. Lett. 2010, 12, 4536.
      (c) Pan, B.; Wang, C.; Wang, D.; Wu, F.; Wan, B. Chem. Commun. 2013, 49, 5073.

    18. [18]

      (a) Yamamoto, K.; Ishida, T.; Tsuji, J. Chem. Lett. 1987, 16, 1157.
      (b) Wang, Q.; Wang, C.; Shi, W.; Xiao, Y.; Guo, H. Org. Biomol. Chem. 2018, 16, 4881.
      (c) Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541.
      (d) Liu, C.-H.; Yu, Z.-X. Angew. Chem., Int. Ed. 2017, 56, 8667.
      (e) Wang, Y.-Y.; Wang, J.-H.; Su, J.-C.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.-Z.; Zhang, S.-W.; Wender, P.-A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 10060.

    19. [19]

      (a) Sumida, Y.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10, 4677.
      (b) Bowman, R. K.; Johnson, J. S. Org. Lett. 2006, 8, 573.

    20. [20]

      (a) Tombe, R.; Iwamoto, T.; Kurahashi, T.; Matsubara, S. Synlett. 2014, 25, 2281.
      (b) Mori, T.; Nakamura, T.; Kimura, M. Org. Lett. 2011, 13, 2266.
      (c) Mita, T.; Tanaka, H.; Higuchi, Y.; Sato, Y. Org. Lett. 2016, 18, 2754.
      (d) Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791.

    21. [21]

      Ogoshi, S.; Nagata, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 5350.  doi: 10.1021/ja060220y

    22. [22]

      (a) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348.
      (b) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2006, 45, 6788.
      (c) Liu, L.; Montgomery, J. Org. Lett. 2007, 9, 3885.
      (d) Tamaki, T.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2011, 50, 12067.

    23. [23]

      (a) Zuo, G.; Louie, J. Angew. Chem., Int. Ed. 2004, 43, 2277.
      (b) Nečas, D.; Kotora, M. Org. Lett. 2008, 10, 5261.
      (c) Wender, P. A.; Takahashi, H.; Witulski, B. J. Am. Chem. Soc. 1995, 117, 4720.

    24. [24]

      Schwager, H.; Spyroudis, S.; Vollhardt, K. P. C. J. Organomet. Chem. 1990, 382, 191.  doi: 10.1016/0022-328X(90)85227-P

    25. [25]

      (a) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. Organometallics 1999, 18, 4660.
      (b) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. Organometallics 1999, 18, 4040.
      (c) Müller, C.; Lachicotte, R. J.; Jones, W. D. Organometallics 2002, 21, 1975.
      (d) Schaub, T.; Radius, U. Chem.-Eur. J. 2005, 11, 5024.
      (e) Schaub, T.; Backes, M.; Radius, U. Organometallics 2006, 25, 4196.
      (f) Iverson, C. N.; Jones, W. D. Organometallics 2001, 20, 5745.

    26. [26]

      Ho, K. Y. T.; Aïssa, C. Chem.-Eur. J. 2012, 18, 3486.  doi: 10.1002/chem.201200167

    27. [27]

      (a) Kumar, P.; Zhang, K.; Louie, J. Angew. Chem., Int. Ed. 2012, 51, 8602.
      (b) Thakur, A.; Facer, M. E.; Louie, J. Angew. Chem., Int. Ed. 2013, 52, 12161.

    28. [28]

      (a) Juliá-Hernández, F.; Ziadi, A.; Nishimura, A.; Martin, R. Angew. Chem., Int. Ed. 2015, 54, 9537.
      (b) Yang, S.; Xu, Y.; Li, J. Org. Lett. 2016, 18, 6244.

    29. [29]

      Auvinet, A.-L.; Harrity, J. P. A. Angew. Chem., Int. Ed. 2011, 50, 2769.  doi: 10.1002/anie.201007598

    30. [30]

    31. [31]

      Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.; Muetterties, E. L. J. Am. Chem. Soc. 1971, 93, 3543.  doi: 10.1021/ja00743a050

    32. [32]

      Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904.  doi: 10.1021/ja0448723

    33. [33]

      (a) Nakao, Y.; Oda, S.; Yada, A.; Hiyama, T. Tetrahedron 2006, 62, 7567.
      (b) Ohnishi, Y.-Y.; Nakao, Y.; Sato, H.; Nakao, Y.; Hiyama, T.; Sakaki, S. Organometallics 2009, 28, 2583.
      (c) Hirata, Y.; Yukawa, T.; Kashihara, N.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 10964.
      (d) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428.
      (e) Yada, A.; Yukawa, T.; Nakao, Y.; Hiyama, T. Chem. Commun. 2009, 3931.
      (f) Yada, A.; Yukawa, T.; Idei, H.; Nakao, Y.; Hiyama, T. Bull. Chem. Soc. Jpn. 2010, 83, 619.
      (g) Nakao, Y.; Yada, A.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 10024.
      (h) Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47, 385.
      (i) Hirata, Y.; Tanaka, M.; Yada, A.; Nakao, Y.; Hiyama, T. Tetrahedron 2009, 65, 5037.
      (j) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874.
      (k) Minami, Y.; Yoshiyasu, H.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2013, 52, 883.
      (l) Nakai, K.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 856.

    34. [34]

      (a) Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47, 385.
      (b) Hirata, Y.; Tanaka, M.; Yada, A.; Nakao, Y.; Hiyama, T. Tetrahedron 2009, 65, 5037.
      (c) Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2010, 132, 10070.
      (d) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624.
      (e) Nakao, Y.; Hirata, Y.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7420.
      (f) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624.

    35. [35]

      (a) Yu, D.-G.; Yu, M.; Guan, B.-T.; Li, B.-J.; Zheng, Y.; Wu, Z.-H.; Shi, Z.-J. Org. Lett. 2009, 11, 3374.
      (b) Sun, M.; Zhang, H.-Y.; Han, Q.; Yang, K.; Yang, S.-D. Chem.-Eur. J. 2011, 17, 9566.

    36. [36]

      Zhang, J.-S.; Chen, T.-Q.; Zhou, Y.-B.; Yin, S.-F.; Han, L.-B. Org. Lett. 2018, 20, 6746.  doi: 10.1021/acs.orglett.8b02854

    37. [37]

      Chen, H.; Sun, S.-H.; Liu, Y.-H.; Liao, X.-B. ACS Catal. 2020, 10, 1397.  doi: 10.1021/acscatal.9b04586

    38. [38]

      Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, O. J. Am. Chem. Soc. 2017, 139, 1416.  doi: 10.1021/jacs.6b12293

    39. [39]

      Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586.  doi: 10.1021/jacs.7b11591

    40. [40]

      Fan, C.; Lv, X.-Y.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2019, 141, 7, 2889.

    41. [41]

      Jiang, C.; Lu, H.; Xu, W.-H.; Wu, J.-N.; Yu, T.-Y.; Xu, P.-F.; Wei, H. ACS Catal. 2020, 10, 1947.  doi: 10.1021/acscatal.9b04112

    42. [42]

      Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791.  doi: 10.1021/ol4005068

    43. [43]

      (a) Liu, Q.-S.; Wang, D.-Y.; Yang, Z.-J.; Luan, Y.-X.; Yang, J.-F.; Li, J.-F.; Pu, Y.-G.; Ye, M.-C. J. Am. Chem. Soc. 2017, 139, 18150.
      (b) Wang, Y.-X.; Ye, M.-C. Sci. China, Chem. 2018, 61, 1004.

    44. [44]

      Bai, D.-C.; Yu, Y.-J.; Guo, H.-M.; Chang, J.-B.; Li, X.-W. Angew. Chem., Int. Ed. 2020, 59, 2740.  doi: 10.1002/anie.201913130

    45. [45]

      (a) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51, 2485.
      (b) Zhou, X.; Dong, G.-B. Angew. Chem., Int. Ed. 2016, 55, 15091.
      (c) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2005, 127, 6932.

    46. [46]

      (a) Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594.
      (b) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874.
      (c) Hsieh, J.-C.; Ebata, S.; Nakao, Y.; Hiyama, T. Synlett 2010, 1709.

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    11. [11]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    19. [19]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    20. [20]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

Metrics
  • PDF Downloads(73)
  • Abstract views(2454)
  • HTML views(862)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return