Recent Advances in Ni-Catalyzed C—C Bond Activation Reactions
- Corresponding author: Bai Dachang, baidachang@htu.edu.cn
Citation:
Dai Hongxue, Wu Fen, Bai Dachang. Recent Advances in Ni-Catalyzed C—C Bond Activation Reactions[J]. Chinese Journal of Organic Chemistry,
;2020, 40(6): 1423-1436.
doi:
10.6023/cjoc202002035
Reviews: (a) Song, F.-J.; Gou, T.; Wang, B.-Q.; Shi, Z.-J. Chem. Soc. Rev. 2018, 47, 7078.
(b) Deng, L.; Jin, L.; Dong, G. Angew. Chem., Int. Ed. 2018, 57, 2702.
(c) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
(d) Chen, P.-H.; Billett, B. A.; Tsukamoto, T.; Dong, G.-B. ACS Catal. 2017, 7, 1340.
(e) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
(f) Liu, H.; Feng, M.-H.; Jiang, X.-F. Chem.-Asian J. 2014, 9, 3360.
(g) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610.
(h) Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640.
(i) Liu, J.-Z.; Qiu, X.; Huang, X.-Q.; Luo, X.; Zhang, C.; Wei, J.-L.; Pan, J.; Liang, Y.-J.; Zhu, Y.-C.; Qin, Q.-X.; Son, S.; Jiao, N. Nat. Chem. 2019, 11, 94.
(j) Sivaguru, P.; Wang, Z.-K.; Zanoni, G.; Bi, X.-H. Chem. Soc. Rev. 2019, 48, 2615.
(k) Wu, X.-X.; Zhu, C. Chem. Rec. 2018, 18, 587.
(a) Murakami, M.; Ishida, N. J. Am. Chem. Soc. 2016, 138, 13759.
(b) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414.
(c) Li, T.-F.; Xu, F.; Li, X.-C.; Wang, C.-X.; Wan, B.-S. Angew. Chem., Int. Ed. 2016, 55, 2861.
(d) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
(e) Chen, W.-L.; Wu, S.-Y.; Mo, X.-L.; Wei, L.-X.; Liang, C.; Mo, D.-L. Org. Lett. 2018, 20, 3527.
(f) Zhao, H.-P; Liang, G.-C.; Nie, S.-M.; Lu, X.; Pan, C.-X.; Zhong, X.-X.; Su, G.-F.; Mo, D.-L. Green Chem. 2020, 22, 404.
(a) Dai, P.-F.; Ning, X.-S.; Wang, H.; Cui, X.-C.; Liu, J.; Qu, J.-P.; Kang, Y.-B. Angew. Chem., Int. Ed. 2019, 58, 5392.
(b) Sun, T.-W.; Zhang, Y.-N.; Qiu, B.; Wang, Y.-F.; Qin, Y.-T.; Dong, G.-B.; Xu, T. Angew. Chem., Int. Ed. 2018, 57, 2859.
(c) Cao, J.; Fang, R.; Liu, J.-Y.; Lu, H.; Luo, Y.-C.; Xu, P.-F. Chem.-Eur. J. 2018, 24, 18863.
(d) Liu, L.-T.; Guo, Z.-H.; Xu, K.; Hui, S.-S.; Zhao, X.-F.; Zhao, B.-L.; Tan, H.; Chen, C.; Jiao, N.; Shi, Z.-Z. Chin. J Chem. 2018, 36, 995.
(e) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
(f) Mao, W.-B.; Zhu, C. J. Org. Chem. 2017, 82, 9133.
Selected examples on nickel catalyzed C—C cleavage: (a) Fan, C.; Lv, X.-Y.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2019, 141, 2889.
(b) Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586.
(c) Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2017, 139, 1416.
(d) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348.
(e) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2006, 45, 67880.
(f) Ogoshi, S.; Nagata, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 5350.
(g) Jiang, L.-H.; Huang, F.; Wang, Q.; Sun, C.-Z.; Liu, J.-B.; Chen, D.-Z. Org. Chem. Front. 2018, 5, 2332.
(a) Wiberg, K.; Waddell, S. T. J. Am. Chem. Soc. 1990, 112, 2194.
(b) Yu, S. J.; Noble, A.; Bedford, R. B.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 20325.
(a) Nakamura, M.; Isobe, H.; Nakamura, E. Chem. Rev. 2003, 103, 1295.
(b) Yang, Y.; Zhang, Z.; Zhang, X.; Wang, D.; Wei, Y.; Shi, M. Chem. Commun. 2014, 50, 115.
(c) Li, X.; Han, C.; Yao, H.; Lin, A. Org. Lett. 2017, 19, 778.
Noyori, R.; Umeda, I.; Takaya H. Chem. Lett. 1972, 1, 1189.
doi: 10.1246/cl.1972.1189
(a) Baba, A.; Ohshiro, Y.; Agawa, T. Chem. Lett. 1976, 5, 11.
(b) Baba, A.; Ohshiro, Y.; Agawa. T. J. Organomet. Chem. 1976, 110, 121.
Zhao, W.-T.; Gao, F.; Zhao, D.-B. Angew. Chem., Int. Ed. 2018, 57, 6329.
doi: 10.1002/anie.201803156
Huang, J. Q.; Ho, C. Y. Angew. Chem., Int. Ed. 2019, 58, 5702.
doi: 10.1002/anie.201901255
(a) Noyori, R.; Odagi, T.; Takaya, H. J. Am. Chem. Soc. 1970, 92, 5780.
(b) Noyori, R.; Kumagai, Y.; Umeda, I.; Takaya, H. J. Am. Chem. Soc. 1972, 94, 4018.
(c) Ma, X.-P.; Nong, C.-M.; Zhao, J.; Lu, X.; Liang, C.; Mo, D.-L. Adv. Synth. Catal. 2020, 362, 478.
(a) Saito, S.; Masuda, M.; Komagawa, S. J. Am. Chem. Soc. 2004, 126, 10540.
(b) Saito, S.; Komagawa, S.; Azumaya, I.; Masuda, M. J. Org. Chem. 2007, 72, 9114.
(c) Komagawa, S.; Saito, S. Angew. Chem., Int. Ed. 2006, 45, 2446.
(d) Maeda, K.; Saito, S. Tetrahedron Lett. 2007, 48, 3173.
(e) Saito, S.; Takeuchi, K. Tetrahedron Lett. 2007, 48, 595.
Saito, S.; Maeda, K.; Yamasaki, R.; Kitamura, T.; Nakagawa, M.; Kato, K.; Azumaya, I.; Masu, H. Angew. Chem., Int. Ed. 2010, 49, 1830.
doi: 10.1002/anie.200907052
Saito, S.; Yoshizawa, T.; Ishigami, S.; Yamasaki, R. Tetrahedron Lett. 2010, 51, 6028.
doi: 10.1016/j.tetlet.2010.09.031
(a) Saya, L.; Bhargava, G.; Navarro, M. A.; Gulías, M.; López, F.; Fernández, I.; Castedo, L.; Mascareñas, J. L. Angew. Chem., Int. Ed. 2010, 49, 9886.
(b) Saya, L.; Fernández, I.; López, F.; Mascareñas, J. L. Org. Lett. 2014, 16, 5008.
Yao, B.; Li, Y.; Liang, Z.; Zhang, Y. Org. Lett. 2011, 13, 640.
doi: 10.1021/ol1028628
(a) Ogata, K.; Shimada, D.; Furuya, S.; Fukuzawa, S.-I. Org. Lett. 2013, 15, 1182.
(b) Ogata, K.; Atsuumi, Y.; Fukuzawa, S.-I. Org. Lett. 2010, 12, 4536.
(c) Pan, B.; Wang, C.; Wang, D.; Wu, F.; Wan, B. Chem. Commun. 2013, 49, 5073.
(a) Yamamoto, K.; Ishida, T.; Tsuji, J. Chem. Lett. 1987, 16, 1157.
(b) Wang, Q.; Wang, C.; Shi, W.; Xiao, Y.; Guo, H. Org. Biomol. Chem. 2018, 16, 4881.
(c) Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541.
(d) Liu, C.-H.; Yu, Z.-X. Angew. Chem., Int. Ed. 2017, 56, 8667.
(e) Wang, Y.-Y.; Wang, J.-H.; Su, J.-C.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.-Z.; Zhang, S.-W.; Wender, P.-A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 10060.
(a) Sumida, Y.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10, 4677.
(b) Bowman, R. K.; Johnson, J. S. Org. Lett. 2006, 8, 573.
(a) Tombe, R.; Iwamoto, T.; Kurahashi, T.; Matsubara, S. Synlett. 2014, 25, 2281.
(b) Mori, T.; Nakamura, T.; Kimura, M. Org. Lett. 2011, 13, 2266.
(c) Mita, T.; Tanaka, H.; Higuchi, Y.; Sato, Y. Org. Lett. 2016, 18, 2754.
(d) Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791.
Ogoshi, S.; Nagata, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 5350.
doi: 10.1021/ja060220y
(a) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348.
(b) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2006, 45, 6788.
(c) Liu, L.; Montgomery, J. Org. Lett. 2007, 9, 3885.
(d) Tamaki, T.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2011, 50, 12067.
(a) Zuo, G.; Louie, J. Angew. Chem., Int. Ed. 2004, 43, 2277.
(b) Nečas, D.; Kotora, M. Org. Lett. 2008, 10, 5261.
(c) Wender, P. A.; Takahashi, H.; Witulski, B. J. Am. Chem. Soc. 1995, 117, 4720.
Schwager, H.; Spyroudis, S.; Vollhardt, K. P. C. J. Organomet. Chem. 1990, 382, 191.
doi: 10.1016/0022-328X(90)85227-P
(a) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. Organometallics 1999, 18, 4660.
(b) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. Organometallics 1999, 18, 4040.
(c) Müller, C.; Lachicotte, R. J.; Jones, W. D. Organometallics 2002, 21, 1975.
(d) Schaub, T.; Radius, U. Chem.-Eur. J. 2005, 11, 5024.
(e) Schaub, T.; Backes, M.; Radius, U. Organometallics 2006, 25, 4196.
(f) Iverson, C. N.; Jones, W. D. Organometallics 2001, 20, 5745.
Ho, K. Y. T.; Aïssa, C. Chem.-Eur. J. 2012, 18, 3486.
doi: 10.1002/chem.201200167
(a) Kumar, P.; Zhang, K.; Louie, J. Angew. Chem., Int. Ed. 2012, 51, 8602.
(b) Thakur, A.; Facer, M. E.; Louie, J. Angew. Chem., Int. Ed. 2013, 52, 12161.
(a) Juliá-Hernández, F.; Ziadi, A.; Nishimura, A.; Martin, R. Angew. Chem., Int. Ed. 2015, 54, 9537.
(b) Yang, S.; Xu, Y.; Li, J. Org. Lett. 2016, 18, 6244.
Auvinet, A.-L.; Harrity, J. P. A. Angew. Chem., Int. Ed. 2011, 50, 2769.
doi: 10.1002/anie.201007598
Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.; Muetterties, E. L. J. Am. Chem. Soc. 1971, 93, 3543.
doi: 10.1021/ja00743a050
Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904.
doi: 10.1021/ja0448723
(a) Nakao, Y.; Oda, S.; Yada, A.; Hiyama, T. Tetrahedron 2006, 62, 7567.
(b) Ohnishi, Y.-Y.; Nakao, Y.; Sato, H.; Nakao, Y.; Hiyama, T.; Sakaki, S. Organometallics 2009, 28, 2583.
(c) Hirata, Y.; Yukawa, T.; Kashihara, N.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 10964.
(d) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428.
(e) Yada, A.; Yukawa, T.; Nakao, Y.; Hiyama, T. Chem. Commun. 2009, 3931.
(f) Yada, A.; Yukawa, T.; Idei, H.; Nakao, Y.; Hiyama, T. Bull. Chem. Soc. Jpn. 2010, 83, 619.
(g) Nakao, Y.; Yada, A.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 10024.
(h) Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47, 385.
(i) Hirata, Y.; Tanaka, M.; Yada, A.; Nakao, Y.; Hiyama, T. Tetrahedron 2009, 65, 5037.
(j) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874.
(k) Minami, Y.; Yoshiyasu, H.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2013, 52, 883.
(l) Nakai, K.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 856.
(a) Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47, 385.
(b) Hirata, Y.; Tanaka, M.; Yada, A.; Nakao, Y.; Hiyama, T. Tetrahedron 2009, 65, 5037.
(c) Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2010, 132, 10070.
(d) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624.
(e) Nakao, Y.; Hirata, Y.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7420.
(f) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624.
(a) Yu, D.-G.; Yu, M.; Guan, B.-T.; Li, B.-J.; Zheng, Y.; Wu, Z.-H.; Shi, Z.-J. Org. Lett. 2009, 11, 3374.
(b) Sun, M.; Zhang, H.-Y.; Han, Q.; Yang, K.; Yang, S.-D. Chem.-Eur. J. 2011, 17, 9566.
Zhang, J.-S.; Chen, T.-Q.; Zhou, Y.-B.; Yin, S.-F.; Han, L.-B. Org. Lett. 2018, 20, 6746.
doi: 10.1021/acs.orglett.8b02854
Chen, H.; Sun, S.-H.; Liu, Y.-H.; Liao, X.-B. ACS Catal. 2020, 10, 1397.
doi: 10.1021/acscatal.9b04586
Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, O. J. Am. Chem. Soc. 2017, 139, 1416.
doi: 10.1021/jacs.6b12293
Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586.
doi: 10.1021/jacs.7b11591
Fan, C.; Lv, X.-Y.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2019, 141, 7, 2889.
Jiang, C.; Lu, H.; Xu, W.-H.; Wu, J.-N.; Yu, T.-Y.; Xu, P.-F.; Wei, H. ACS Catal. 2020, 10, 1947.
doi: 10.1021/acscatal.9b04112
Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791.
doi: 10.1021/ol4005068
(a) Liu, Q.-S.; Wang, D.-Y.; Yang, Z.-J.; Luan, Y.-X.; Yang, J.-F.; Li, J.-F.; Pu, Y.-G.; Ye, M.-C. J. Am. Chem. Soc. 2017, 139, 18150.
(b) Wang, Y.-X.; Ye, M.-C. Sci. China, Chem. 2018, 61, 1004.
Bai, D.-C.; Yu, Y.-J.; Guo, H.-M.; Chang, J.-B.; Li, X.-W. Angew. Chem., Int. Ed. 2020, 59, 2740.
doi: 10.1002/anie.201913130
(a) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51, 2485.
(b) Zhou, X.; Dong, G.-B. Angew. Chem., Int. Ed. 2016, 55, 15091.
(c) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2005, 127, 6932.
(a) Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594.
(b) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874.
(c) Hsieh, J.-C.; Ebata, S.; Nakao, Y.; Hiyama, T. Synlett 2010, 1709.
Yan Qi , Yueqin Yu , Weisi Guo , Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Shuai Tang , Zian Wang , Mengyi Zhu , Xinyun Zhao , Xiaoyun Hu , Hua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283