Citation: Zhang Yang, Xing Fen, Feng Zenan, Du Guangfen, Gu Chengzhi, He Lin. N-Heterocyclic Carbene-Catalyzed Double Michael Addition of Cyano Acetates and Dienones: Diastereoselective Synthesis of Multisubstituted Cyclohexanones and Indanes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1608-1617. doi: 10.6023/cjoc202002012 shu

N-Heterocyclic Carbene-Catalyzed Double Michael Addition of Cyano Acetates and Dienones: Diastereoselective Synthesis of Multisubstituted Cyclohexanones and Indanes

  • Corresponding author: Du Guangfen, duguangfen@shzu.edu.cn He Lin, helin@shzu.edu.cn
  • Received Date: 11 February 2020
    Revised Date: 14 March 2020
    Available Online: 31 March 2020

    Fund Project: the National Natural Science Foundation of China 21662029Project supported by the National Natural Science Foundation of China (No. 21662029)

Figures(3)

  • The unique Brønsted basic character of N-heterocyclic carbenes (NHCs) has been used to catalyze the double Michael addition between dienones and cyanoacetates. In the presence of 10 mol% NHC, divinyl ketones reacted with cyano acetates to produce multisubstituted cyclohexanones in 60%~89% yields with 5:1~>20:1 dr. Under the same conditions, benzenedi(enones) underwent double Michael addition with cyano acetates or malononitrile to construct multisubstituted indanes in 77%~98% yields and >20:1 dr.
  • 加载中
    1. [1]

    2. [2]

      (a) Langdon, S. M.; Wilde, M. M. D.; Thai, K.; Gravel, M. J. Am. Chem. Soc. 2014, 136, 7539.
      (b) Kuhl, N.; Glorius, F. Chem. Commun. 2011, 47, 573.
      (c) Jia, M.-Q.; You, S.-L. ACS Catal. 2013, 3, 622.
      (d) Sun, L.-H.; Liang, Z.-Q.; Jia, W.-Q.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 5803.
      (e) Di Rocco, D. A.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 5904.

    3. [3]

      (a) Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 6284.
      (b) Mattson, A. E.; Zuhl, A. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2006, 128, 4932.
      (c) Liu, Q.; Perreault, S.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14066.
      (d) Enders, D.; Han, J. W.; Henseler, A. Chem. Commun. 2008, 34, 3989.
      (e) Hirano, K.; Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 14190.
      (f) Zhang, J.; Xing, C.; Tiwari, B.; Chi, Y. R. J. Am. Chem. Soc. 2013, 135, 8113.

    4. [4]

      (a) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205.
      (b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370.
      (c) Izquierdo, J.; Scheidt, K. A. J. Am. Chem. Soc. 2013, 135, 10634.
      (d) Lv, H.; Jia, W.-Q.; Sun, L.-H.; Ye, S. Angew. Chem. Int. Ed. 2013, 52, 8607.
      (e) Zhu, T.-S.; Mou, C.-L.; Li, B.-S.; Smetankova, M.; Song, B.-A.; Chi, Y. R. J. Am. Chem. Soc. 2015, 137, 5658.

    5. [5]

      (a) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796.
      (b) Li, G.-Q.; Li, Y.; Dai, L.-X.; You, S.-L. Org. Lett. 2007, 9, 3519.
      (c) Mo, J.; Chen, X.; Chi, Y.-R. J. Am. Chem. Soc. 2012, 134, 8810.
      (d) Izquierdo, J.; Scheidt, K. A. J. Am. Chem. Soc. 2013, 135, 10634.
      (e) Candish, L.; Levens, A.; Lupton, D. W. Chem. Sci. 2015, 6, 2366.

    6. [6]

      (a) Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S. Org. Lett. 2008, 10, 277.
      (b) Huang, X.-L.; He, L.; Shao, P.-L.; Ye, S. Angew. Chem., Int. Ed. 2009, 48, 192.
      (c) Jian, T.-Y.; He, L.; Tang, C.; Ye, S. Angew. Chem., Int. Ed. 2011, 50, 9104.
      (d) Shao, P.-L.; Chen, X.-Y.; Ye, S. Angew. Chem., Int. Ed. 2010, 49, 8412.
      (e) Jian, T.-Y.; Chen, X.-Y.; Sun, L.-H.; Ye, S. Org. Biomol. Chem. 2013, 11, 158.
      (f) Shen, L.; Jia, W.; Ye, S. Chin. J. Chem. 2014, 32, 814.

    7. [7]

      (a) Fu, Z.-Q.; Xu, J.-F.; Zhu, T.-S.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835.
      (b) Huang, Z.-J.; Huang, X.; Li, B.-S.; Mou, C.-L.; Yang, S.; Song, B.-A.; Chi, Y. R. J. Am. Chem. Soc. 2016, 138, 7524.
      (c) Wu, X.-X.; Hao, L.; Zhang, Y.-X.; Rakesh, M.; Reddi, R. N.; Yang, S.; Song, B.-A.; Chi, Y. R. Angew. Chem., Int. Ed. 2017, 56, 4201.
      (d) Fu, Z.-Q.; Wu, X.-X.; Chi, Y. R. Org. Chem. Front. 2016, 3, 145.
      (e) Jin, Z.-C.; Chen, S.-J.; Wang, Y.; Zheng, P.-C.; Yang, S.; Chi, Y. R. Angew. Chem., Int. Ed. 2014, 53, 13506.
      (f) Cheng, J.-J.; Huang, Z.-J.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 8592.

    8. [8]

      Boddaert, T.; Coquerel, Y.; Rodriguez, J. Adv. Synth. Catal. 2009, 351, 1744.  doi: 10.1002/adsc.200900292

    9. [9]

      Phillips, E. M.; Riedrich, M.; Scheidt, K. A. J. Am. Chem. Soc. 2010, 132, 13179.  doi: 10.1021/ja1061196

    10. [10]

      Kang, Q.; Zhang, Y. Org. Biomol. Chem. 2011, 9, 6715.  doi: 10.1039/c1ob05429e

    11. [11]

    12. [12]

      (a) Chen, J.; Meng, S.; Wang, L.; Tang, H.; Huang, Y. Chem. Sci. 2015, 6, 4184.
      (b) Chen, J.; Huang, Y. Nat. Commun. 2014, 5, 3437.
      (c) Wang, L.; Chen, J.; Huang, Y. Angew. Chem., Int. Ed. 2015, 54, 15414.
      (d) Chen, J.; Yuan, P.; Wang, L.; Huang, Y. J. Am. Chem. Soc. 2017, 139, 7045.

    13. [13]

      (a) Gabriele, B.; Mancuso, R.; Veltri, L. Chem.-Eur. J. 2016, 22, 5056.
      (b) Borie, C.; Ackermann, L.; Nechab, M. Chem. Soc. Rev. 2016, 45, 136.

    14. [14]

      (a) Zhang, Y.; Li, R.; He, Y.-H.; Guan, Z. Catal. Lett. 2017, 147, 633.
      (b) Xu, D.-Z.; Zhan, M.-Z.; Huang, Y. Tetrahedron 2014, 70, 176.
      (c) Breden kötter, B.; Linke, J.; Kuck, D. Eur. J. Org. Chem. 2017, 2017, 4414.
      (d) Liu, C.-H.; Xu, Y.-L.; Niu, S.-Y.; Wei, L.-Q.; Liu, Y.; Wang, Y.-B.; Zhu, J.-Y.; Fu, J.-Y.; Yuan, J.-F. Chin. J. Chem. 2017, 35, 1231.
      (e) Li, X.; Wang, B.; Zhang, J.; Yan, M. Org. Lett. 2011, 13, 374.

    15. [15]

      (a) Sun, H.-Y.; Xu, S.-Y.; Xing, Z.-M.; Liu, L.; Feng, S.-B.; Fang, B.; Xie, X.-G.; She, X.-G. Org. Chem. Front. 2017, 4, 2109.
      (b) Wang, Z.-Y.; Ding, Y.-L.; Wang, G.; Cheng, Y. Chem. Commun. 2016, 52, 788.
      (c) Li, Y.; Wang, X.-Q.; Zheng, C.; You, S. L. Chem. Commun. 2009, 5823.
      (d) Mueller, D. J.; Schedler, M.; Fleige, M.; Daniliuc, C. G.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 12492.
      (e) Fan, X.-W.; Cheng, Y. Org. Biomol. Chem. 2014, 12, 123.
      (f) Biswas, A.; Sarkar, S. D.; Froehlich, R.; Studer, A. Org. Lett. 2011, 13, 4966.

    16. [16]

      (a) Li, J. T.; Xu, W. Z.; Chen, G.-F.; Li, T. S. Ultrason. Sonochem. 2005, 12, 473.
      (b) Yu, Y.-Q.; Wang, Z.-L. Chem. Res. Chin. Univ. 2013, 29, 1115.
      (c) Xu, D.-Z.; Zhan, M.-Z.; Huang, Y. Tetrahedron 2014, 70, 176.
      (d) Fusco, C. D.; Lattanzi, A. Eur. J. Org. Chem. 2011, 2011, 3728.
      (e) Li, X.-M.; Wang, B.; Zhang, J.-M.; Yan, M. Org. Lett. 2011, 13, 374.
      (f) Wu, L. Y.; Bencivenni, G.; Mancinelli, M.; Mazzanti, A.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7196.

    17. [17]

      Liu, X.; Xu, X.; Pan, L.; Zhang, Q.; Liu, Q. Org. Biomol. Chem. 2013, 11, 6703.  doi: 10.1039/c3ob41400k

    18. [18]

      Mark, S. K.; Javier, R. A.; Rovis, T. J. Org. Chem. 2005, 70, 5725.  doi: 10.1021/jo050645n

    19. [19]

      (a) Ramachary, D. B.; Reddy, Y. V.; Prakash, B. V. Org. Biomol. Chem. 2008, 6, 719.
      (b) Takaya, H.; Murahashi, S. I. Synlett 2001, 9, 991.

    20. [20]

      (a) Zhang, Y.; Li, R.; He, Y.-H.; Guan, Z. Catal. Lett. 2017, 147, 633.
      (b) Li, Y.-G.; Zhang, Y.; Du, G.-F.; Gu, C.-Z.; He, L. Lett. Org. Chem. 2019, 16, 76.

    21. [21]

      Arduengo, A. J.; Krafczyk, R.; Schmutzler, R. Terahedron 1999, 55, 14523.  doi: 10.1016/S0040-4020(99)00927-8

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    3. [3]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    4. [4]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    5. [5]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    9. [9]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    14. [14]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    17. [17]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    18. [18]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(8)
  • Abstract views(890)
  • HTML views(195)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return