Citation: Cheng Lin, Ge Xin, Liu Xuemin, Feng Yunhui. Chitosan@Cu-Catalyzed C3-Sulfenylation of Indoles with Sulfur Powder and Aryl Iodides[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 2008-2017. doi: 10.6023/cjoc202001030 shu

Chitosan@Cu-Catalyzed C3-Sulfenylation of Indoles with Sulfur Powder and Aryl Iodides

  • Corresponding author: Liu Xuemin, lxm@jiangnan.edu.cn Feng Yunhui, 13795553266@163.com
  • Received Date: 23 January 2020
    Revised Date: 29 April 2020
    Available Online: 7 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21606104)the National Natural Science Foundation of China 21606104

Figures(8)

  • Aiming at the problem that the catalyst can not be recovered during the construction of the C-S bond in the indole ring with sulfur powder as the sulfur source, 2-pyridinecarboxylic acid modified chitosan (PACS) catalyst with different type of copper was prepared, which was used to catalyze the three-component reaction of indole, sulfur powder and iodobenzene to prepare C-3 thioether-based indole in a one-pot method. The reaction yield is as high as 92%, and the substrate has good applicability. The most suitable catalyst[PACS@Cu(OAc)2] was characterized and analyzed by thermogravimetric analysis (TGA), scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS), etc. It shows that the catalyst has the advantages of no additional ligand, easy separation and reusable.
  • 加载中
    1. [1]

    2. [2]

      (a) Dunbar, K. L.; Scharf, D. H.; Litomska, A.; Hertweck, C. Chem. Rev. 2017, 117, 5521.
      (b) Chekler, E. L. P.; Elokdah, H. M.; Butera, J. Tetrahedron Lett. 2008, 49, 6709.

    3. [3]

    4. [4]

      Funk, C. D. Nat. Rev. Drug Discovery 2005, 4, 664.  doi: 10.1038/nrd1796

    5. [5]

      La Regina, G.; Edler, M. C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; De Martino, G.; Matesanz, R.; Diaz, J. F.; Scovassi, A. I.; Prosperi, E.; Lavecchia, A.; Novellino, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2007, 50, 2865.
       

    6. [6]

      La Regina, G.; Coluccia, A.; Brancale, A.; Piscitelli, F.; Famiglini, V.; Cosconati, S.; Maga, G.; Samuele, A.; Gonzalez, E.; Clotet, B.; Schols, D.; Este, J. A.; Novellino, E.; Silvestri, R. J. Med. Chem. 2012, 55, 6634.
       

    7. [7]

      Lavekar, A. G.; Equbal, D.; Saima; Sinha, A. K. Adv. Synth. Catal. 2018, 360, 180.  doi: 10.1002/adsc.201701028

    8. [8]

      Gandeepan, P.; Koeller, J.; Ackermann, L. ACS Catal. 2017, 7, 1030.  doi: 10.1021/acscatal.6b03236

    9. [9]

      Liu, X. X.; Cui, H. H.; Yang, D. S.; Dai, S. C.; Zhang, G. Q.; Wei, W.; Wang, H. Catal. Lett. 2016, 146, 1743.

    10. [10]

      Luckhurst, C. A.; Millichip, I.; Parker, B.; Reuberson, J.; Furber, M. Tetrahedron Lett. 2007, 48, 8878.  doi: 10.1016/j.tetlet.2007.10.046

    11. [11]

      (a) Wang, C. C.; Wang, Z. H.; Wang, L.; Chen, Q.; He, M. Y. Chin. J. Chem. 2016, 34, 1081.
      (b) Fan, W. G.; Yang, Q.; Xu, F. S.; Li, P. X. J. Org. Chem. 2014, 79, 10588.

    12. [12]

      (a) Jones, J. M.; Dupont, V. A.; Brydson, R.; Fullerton, D. J.; Nasri, N. S.; Ross, A. B.; Westwood, A. V. K. Catal. Today 2003, 81, 589.
      (b) Chu, H.; Wu, L. W. J. Environ. Sci. Health, Part A 1998, 33, 1119.

    13. [13]

      Rostami, A.; Rostami, A.; Iranpoor, N.; Zolfigol, M. A. Tetrahedron Lett. 2016, 57, 192.
       

    14. [14]

      (a) Wu, W.; Ding, Y. C.; Xie, P.; Tang, Q. J.; Pittman, C. U.; Zhou, A. H. Tetrahedron 2017, 73, 2151.
      (b) Guo, T.; Wei, X. N.; Wang, H. Y.; Zhu, Y. L.; Zhao, Y. H.; Ma, Y. C. Org. Biomol. Chem. 2017, 15, 9455.
      (c) Guo, T.; Wei, X. N.; Zhu, Y. L.; Chen, H.; Han, S. L.; Ma, Y. C. Synlett 2018, 29, 1530.
      (d) Ravi, C.; Reddy, N. N. K.; Pappula, V.; Samanta, S.; Adimurthy, S. J. Org. Chem. 2016, 81, 9964.
      (e) Thanh Binh, N.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2013, 15, 4218.

    15. [15]

      Xiong, J.; Zhong, G. F.; Liu, Y. Y. Adv. Synth. Catal. 2019, 361, 550.  doi: 10.1002/adsc.201801221

    16. [16]

      Shibahara, F.; Kanai, T.; Yamaguchi, E.; Kamei, A.; Yamauchi, T.; Murai, T. Chem. Asian J. 2014, 9, 237.  doi: 10.1002/asia.201300882

    17. [17]

      Li, J.; Li, C.; Yang, S.; An, Y.; Wu, W.; Jiang, H. J. Org. Chem. 2016, 81, 7771.  doi: 10.1021/acs.joc.6b01428

    18. [18]

      Ge, X.; Cheng, L.; Sun, F. L.; Liu, X. M.; Chen, X. Z.; Qian, C.; Zhou, S. D. Catal. Commun. 2019, 123, 32.  doi: 10.1016/j.catcom.2019.01.015

    19. [19]

      Thanh Binh, N. Adv. Synth. Catal. 2017, 359, 1066.  doi: 10.1002/adsc.201601329

    20. [20]

    21. [21]

      Bahuguna, A.; Kumar, A.; Kumar, S.; Chhabra, T.; Krishnan, V. ChemCatChem 2018, 10, 3121.  doi: 10.1002/cctc.201800369

    22. [22]

      Hong, K. B.; Lee, C. W.; Yum, E. K. Tetrahedron Lett. 2004, 45, 693.  doi: 10.1016/j.tetlet.2003.11.075

    23. [23]

      Siddiki, S.; Kon, K.; Shimizu, K. Chem-Eur. J. 2013, 19, 14416.

    24. [24]

    25. [25]

      Liu, X. M.; Chang, S.; Chen, X. Z.; Ge, X.; Qian, C. New J. Chem. 2018, 42, 16013.

    26. [26]

      Baran, T.; Mentes, A.; Arslan, H. Int. J. Biol. Macromol. 2015, 72, 94.  doi: 10.1016/j.ijbiomac.2014.07.029

    27. [27]

      Chen, H.-Y.; Peng, W.-T.; Lee, Y.-H.; Chang, Y.-L.; Chen, Y.-J.; Lai, Y.-C.; Jheng, N.-Y.; Chen, H.-Y. Organometallics 2013, 32, 5514.  doi: 10.1021/om400784w

    28. [28]

      Gu, F.; Geng, J.; Li, M.; Chang, J.; Cui, Y. ACS Omega 2019, 4, 21421.  doi: 10.1021/acsomega.9b03128

    29. [29]

      Wang, Y.; Liu, Q.; Xu, M.; Shu, G.; Jiang, M.; Fei, G.; Zeng, M. J. Macromol. Sci. B 2017, 56, 670.  doi: 10.1080/00222348.2017.1361273

    30. [30]

      Jiang, Y.; Wang, Y.; Han, Q.; Zhu, R.; Xiong, X. Chin. J. Org. Chem. 2014, 34, 2068(in Chinese).
       

    31. [31]

      Frindy, S.; Kadib, A.; Lahcini, M.; Primo, A.; Garcia, H. ChemCatChem 2015, 7, 3307.  doi: 10.1002/cctc.201500565

    32. [32]

      Wang, L.; Li, B.; Xu, F.; Shi, X.; Feng, D.; Wei, D.; Li, Y.; Feng, Y.; Wang, Y.; Jia, D.; Zhou, Y. Biosens. Bioelectron. 2016, 79, 1.  doi: 10.1016/j.bios.2015.11.085

    33. [33]

      Verma, S. K.; Ghorpade, R.; Pratap, A.; Kaushik, M. P. Green Chem. 2012, 14, 326.  doi: 10.1039/C1GC16314K

    34. [34]

      Chen, M.; Huang, Z.-T.; Zheng, Q.-Y. Chem. Commun. 2012, 48, 11686.  doi: 10.1039/c2cc36866h

    35. [35]

      Wang, P.; Tang, S.; Huang, P.; Lei, A. Angwe. Chem., Int. Ed. 2017, 56, 3009.  doi: 10.1002/anie.201700012

    36. [36]

      Chen, M.; Luo, Y.; Zhang, C.; Guo, L.; Wang, Q.; Wu, Y. Org. Chem. Front. 2019, 6, 116.  doi: 10.1039/C8QO00726H

    37. [37]

      Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J.; Praneeth, K. Synthesis 2009, 9, 1520.
       

  • 加载中
    1. [1]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    6. [6]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    7. [7]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    10. [10]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    15. [15]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(1)
  • Abstract views(1191)
  • HTML views(220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return