Citation: Zhang Yan, Wang Yunyun, Zhao Yuxun, Zhang Chenglong, Gu Wen, Wang Zhonglong, Zhu Yongqiang, Wang Shifa. Camphor-Based Thiosemicarbazone Analogues Induced G2 Cell Cycle Arrest and Apoptosis via Reactive Oxygen Species (ROS)-Mediated Mitochondrial Pathway in Human Breast Cancer Cells[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2374-2386. doi: 10.6023/cjoc202001021 shu

Camphor-Based Thiosemicarbazone Analogues Induced G2 Cell Cycle Arrest and Apoptosis via Reactive Oxygen Species (ROS)-Mediated Mitochondrial Pathway in Human Breast Cancer Cells

  • Corresponding author: Zhu Yongqiang, zhyqscu@163.com Wang Shifa, wangshifa65@163.com
  • Received Date: 14 January 2020
    Revised Date: 22 May 2020
    Available Online: 8 June 2020

    Fund Project: Natural National Science Foundation of China 31470592Doctorate Fellowship Foundation of Nanjing Forestry University 31470592Key Technology of Green Processing and Efficient Utilization on Oleoresin 2016YFD0600804Project supported by the Doctorate Fellowship Foundation of Nanjing Forestry University, the Natural National Science Foundation of China (No. 31470592), the University Science Research Project of Jiangsu Province (No. 14KJ220001) and the Key Technology of Green Processing and Efficient Utilization on Oleoresin (No. 2016YFD0600804)University Science Research Project of Jiangsu Province 14KJ220001

Figures(7)

  • 22 novel camphor-based thiosemicarbazone derivatives were synthesized using camphor-based thiosemicarbazone as material and their structures were determined by 1H NMR, 13C NMR and HRMS. The crystal structure of 2-(3-(pyridin-4-ylmethylene)-1, 7, 7-trimethylbicyclo[2.2.1]heptan-2-ylidene)hydrazinecarbothioamide (3n) was determined by single crystal X-ray diffraction. The derivatives were screened in vitro for anticancer activities against human breast cancer cell line (MDA-MB-231), human lung adenocarcinoma cell line (A549), human multiple myeloma cell line (RPMI-8226) and toxicity against a normal human cell line (GES-1) by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS). It was found that majority of the tested analogs showed moderate to significant antitumor activity against selected cancer cell lines. Noticeably, 2-(3-(anthracen-9-ylmethylene)-1, 7, 7-trimethylbicyclo[2.2.1]heptan-2-ylidene)-hydrazinecarbothioamide (3s) exhibited selective anti-tumor activities against MDA-MB-231 cells (IC50=3.90±0.04 μmol·L-1) and low toxicity to GES-1 cells (IC50>50 μmol·L-1). In the process of exploring the underlying mechanism of 3s, it was found that compound 3s could cause G2 phase arrest and apoptosis in MDA-MB-231 cells by overproduction of intracellular reactive oxygen species and collapse of mitochondrial membrane potential. The measured results were confirmed by western blot assay.
  • 加载中
    1. [1]

      Xu Z., Zhao S. J., Liu Y.Eur. J. Med. Chem., 2019, 183:111700.
       

    2. [2]

      Zhang L., Xu Z.Eur. J. Med. Chem., 2019, 181:111587.
       

    3. [3]

      Magalhaes Moreira D. R., de Oliveira A. D., Teixeira de Moraes Gomes P. A., de Simone C. A., Villela F. S., Ferreira R. S., Leite A. C.Eur. J. Med. Chem., 2014, 75:467.
       

    4. [4]

      De Melos J. L., Torres-Santos E. C., Faioes Vdos S., Del Cistia Cde N., Sant'Anna C. M., Rodrigues-Santos C. E., Echevarria A.Eur. J. Med. Chem., 2015, 103:409.
       

    5. [5]

      Linciano P., Moraes C. B., Alcantara L. M., Franco C. H., Pascoalino B., Freitas-Junior L. H., Costi M. P.Eur. J. Med. Chem., 2018, 146:423.
       

    6. [6]

      El-Sharief M. A., Abbas S. Y., El-Bayouki K. A., El-Gammal E. W.Eur. J. Med. Chem., 2013, 67:263.
       

    7. [7]

      Zhang X., Guo H., Li Z., Song F., Wang W., Dai H., Wang J.Eur. J. Med. Chem., 2015, 101:419.
       

    8. [8]

      Banerjee D., Yogeeswari P., Bhat P., Thomas A., Srividya M., Sriram D.Eur. J. Med. Chem., 2011, 46:106.
       

    9. [9]

      Kesel A. J.Eur. J. Med. Chem., 2011, 46:1656.
       

    10. [10]

      Chavarria G. E., Horsman M. R., Arispe W. M., Kumar G. D., Chen S. E., Strecker T. E., Trawick M. L.Eur. J. Med. Chem., 2012, 58:568.
       

    11. [11]

      Pervez H., Khan N., Zaib S., Yaqub M., Naseer M. M., Tahir M. N., Iqbal J.Bioorg. Med. Chem., 2017, 25:1022.
       

    12. [12]

      Song S., You A., Chen Z., Zhu G., Wen H., Song H., Yi W.Eur. J. Med. Chem., 2017, 139:815.
       

    13. [13]

      De Oliveira J. F., Lima T. S., Vendramini-Costa D. B., de Lacerda Pedrosa S. C. B., Lafayette E. A., da Silva R. M. F., de Lima M.Eur. J. Med. Chem., 2017, 136:305.
       

    14. [14]

      Vandresen F., Falzirolli H., Almeida Batista S. A., da Silva-Giardini A. P., de Oliveira D. N., Catharino R. R., da Silva C. C.Eur. J. Med. Chem., 2014, 79:110.
       

    15. [15]

      Lukmantara A. Y., Kalinowski D. S., Kumar N., Richardson D. R.Bioorg. Med. Chem. Lett., 2013, 23:967.
       

    16. [16]

      Rao V. A., Klein S. R., Agama K. K., Toyoda E., Adachi N., Pommier Y., Shacter E. B.Cancer Res., 2009, 69:948.
       

    17. [17]

      Malarz K., Mrozek-Wilczkiewicz A., Serda M., Rejmund M., Musiol R.Oncotarget, 2018, 9:17689.
       

    18. [18]

      Lovejoy D. B., Richardson D. R.Blood, 2002, 100:666.
       

    19. [19]

      Da Silva A. P., Martini M. V., de Oliveira C. M., Cunha S., de Carvalho J. E., Ruiz A. L., da Silva C. C.Eur. J. Med. Chem., 2010, 45:2987.
       

    20. [20]

      Bao M., Yang Y., Gu W., Xu X., Cao M., Wang S.Chin. J. Org. Chem., 2014, 34:2146(in Chinese).
       

    21. [21]

      Sun N., Wang X., Ding Z., Zhang Q., Xu X., Xu H., Wang S.Chin. J. Org. Chem., 2016, 36:2489(in Chinese).
       

    22. [22]

      Rui J., Cai T., Yang J., Yang Y., Xu X., Wang S.J. Nanjing. For. Univ., 2017, 41:149(in Chinese).
       

    23. [23]

      Ma C., Wang Y., Dong F., Wang Z., Zhao Y., Shan Y., Wang S.Chem. Biol. Drug Des., 2019, 94:1457.
       

    24. [24]

      Wang Y., Wang Z., Kuang H., Zhang Y., Gu W., Zhu Y., Wang S.Chem. Biol. Drug Des., 2019, 94:1281.
       

    25. [25]

      Sokolova A. S., Yarovaya O. C., Korchagina D. V., Zarubaev V. V., Tretiak T. S., Anfimov P. M., Salakhutdinov N. F.Bioorg. Med. Chem., 2017, 127:661.
       

    26. [26]

      Stavrakov G., Valcheva V., Philipova I., Doytchinova I.Eur. J. Med. Chem., 2013, 70:372.
       

    27. [27]

      Sokolova A. S., Yarovaya O. C., Korchagina D. V., Zarubaev V. V., Tretiak T. S., Anfimov P. M., Salakhutdinov N. F.Bioorg. Med. Chem., 2014, 22:2141.
       

    28. [28]

      Kuranov S. O., Tsypysheva I. P., Khvostov M. V., Zainullina L. F., Borisevich S. S., Vakhitova Y. V., Salakhutdinov N. F.Bioorg. Med. Chem., 2018, 26:4402.
       

    29. [29]

      Hossain M., Das U., Dimmock J. R.Eur. J. Med. Chem., 2019, 183:111687.
       

    30. [30]

      Dan W., Dai J.Eur. J. Med. Chem., 2020, 187:111980.
       

    31. [31]

      Zhu M., Wang J., Xie J., Chen L., Wei X., Jiang X., Bao M., Qiu Y., Chen Q., Li W., Jiang C., Zhou X., Jiang L., Qiu P., Wu J.Eur. J. Med. Chem., 2018, 157:1395.
       

    32. [32]

      Liu C., Wen R., He M., Yi X., Ye X., Fang L.Chin. J. Appl. Chem., 2017, 38:900(in Chinese).
       

    33. [33]

      Zhang H., Qian Y., Zhu D., Yang X., Zhu H.Eur. J. Med. Chem., 2011, 46:4702.
       

    34. [34]

      Simon H. U., Haj-Yehia A., Levi-Schaffer F.Apoptosis, 2000, 5:415.
       

    35. [35]

      Circu M. L., Aw T. Y.Free Radical Biol. Med., 2010, 48:749.
       

    36. [36]

      Dharmaraja A. T.J. Med. Chem., 2017, 60:3221.
       

    37. [37]

      Yamada Y., Harashima H.Adv. Drug Delivery Rev., 2008, 60:1439.
       

    38. [38]

      Galluzzi L., Zamzami N., de La Motte Rouge T., Lemaire C., Brenner C., Kroemer G.Apoptosis, 2007, 12:803.
       

    39. [39]

      Jin Z., El-Deiry W. S.Cancer Biol. Ther., 2005, 4:139.
       

    40. [40]

      Martinou J. C., Desagher S., Antonsson B.Nat. Cell Biol., 2005, 2:41.
       

    41. [41]

      Xiong S., Mu T., Wang G., Jiang X.Protein Cell, 2014, 5:737.
       

  • 加载中
    1. [1]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    2. [2]

      Qianyun YeYuanyuan LiangYuhe YuanXiaohuan SunLiqi ZhuXuan WuJie HanRong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432

    3. [3]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    4. [4]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    5. [5]

      Yuanyuan ZengFang LiuJun WangBianfei ShaoTao HeZhongzheng XiangYan WangShunyao ZhuTian YangSiting YuChangyang GongLei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734

    6. [6]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    7. [7]

      Mengjie GaoZhiqiang CuiYue ShenYikun LiDongxiang ZhangXiaoyan GaoYaguang SunXin-Dong JiangJianjun DuXiaohong Sun . NIR-II emissive aza-BODIPY-based nanoparticles for triggering glioblastoma apoptosis in brain. Chinese Chemical Letters, 2025, 36(5): 110098-. doi: 10.1016/j.cclet.2024.110098

    8. [8]

      Xueying ShiXiaoxuan ZhouBing XiaoHongxia XuWei ZhangHongjie HuShiqun ShaoZhuxian ZhouYouqing ShenXiaodan XuJianbin Tang . A β-lapachone-loaded iron-polyphenol nanocomplex enhances chemodynamic therapy through cascade amplification of ROS in tumor. Chinese Chemical Letters, 2025, 36(5): 110178-. doi: 10.1016/j.cclet.2024.110178

    9. [9]

      Tiancong ShiXi ChenXiao ZhouHongyi ZhangFuping HanLihan CaiWen SunJianjun DuJiangli FanXiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408

    10. [10]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    11. [11]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

    12. [12]

      Xue-Jiao WangJun-Li XinHong XiangZe-Yu ZhaoYu-Hang HeHaibo WangGuangyao MeiYi-Cheng MaoJuan XiongJin-Feng Hu . Holotrichones A and B, potent anti-leukemic lindenane-type sesquiterpene trimers with unprecedented complex carbon skeletons from a rare Chloranthus species. Chinese Chemical Letters, 2024, 35(12): 109682-. doi: 10.1016/j.cclet.2024.109682

    13. [13]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    14. [14]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    15. [15]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    16. [16]

      Kunya WangBingyu LiuDaojiang YanJian BaiHaibo YuYoucai Hu . Full biosynthetic pathway of pyrrolobenzoxazines. Chinese Chemical Letters, 2025, 36(1): 109811-. doi: 10.1016/j.cclet.2024.109811

    17. [17]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    18. [18]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    19. [19]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    20. [20]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

Metrics
  • PDF Downloads(5)
  • Abstract views(949)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return