Citation: ChenZhang Pengfei, Lan Wenjie, Yu Xuan, Fu Bin. New Application of β, γ-Unsaturated α-Ketoesters in Asymmetric Catalysis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1448-1460. doi: 10.6023/cjoc202001019 shu

New Application of β, γ-Unsaturated α-Ketoesters in Asymmetric Catalysis

  • Corresponding author: Fu Bin, fubinchem@cau.edu.cn
  • Received Date: 13 January 2020
    Revised Date: 14 March 2020
    Available Online: 31 March 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21572265) and the Ministry of Science and Technology of China (No. 2015BAK45B01)the Ministry of Science and Technology of China 2015BAK45B01the National Natural Science Foundation of China 21572265

Figures(39)

  • β, γ-Unsaturated α-ketoester is a class of polyfunctional synthon. Due to its 1, 2-dicarbonyl structure and multiple reactive sites, it has been used for the synthesis of various compounds. In the past twenty years, a number of chiral Lewis acid catalysts and organocatalysts have been applied to asymmetric catalytic reactions using β, γ-unsaturated α-ketoesters and various optically active compounds have been synthesized. The current progress of β, γ-unsaturated α-ketoesters in asymmetric catalysis according to the three different reaction sites, unsaturated acyl conjugate system, carbon-carbon double bond and carbonyl group, is summarized. Finally, the limitation of related reactions and the future development trends are also pointed out.
  • 加载中
    1. [1]

      Walsh, J. P.; Kozowski, M. C. Fundamentals of Asymmetric Catalysis, Translated by Zhao, Y. J., Chemical Industry Press, Beijing, 2018 (in Chinese).

    2. [2]

      Liu, L.; Ma, H.-L.; Xiao, Y.-M.; Du, F.-P.; Qin, Z.-H.; Li, N.; Fu, B. Chem. Commun. 2012, 48, 9281.  doi: 10.1039/c2cc34803a

    3. [3]

      Liu, Y.; Shang, D. J.; Zhou, X.; Zhu, Y.; Lin, L.-L.; Liu, X.-H.; Feng, X.-M. Org. Lett. 2010, 12, 180.  doi: 10.1021/ol902587t

    4. [4]

      Peng, L.; Wang, L.-L.; Bai, J.-F.; Jia, L.-N.; Guo, Y.-L; Luo, X.-Y.; Wang, F.-Y.; Yu, X. Y.; Wang, L. X. Org. Biomol. Chem. 2011, 9, 4774.  doi: 10.1039/c1ob05607g

    5. [5]

      Xu, Z.-H.; Liu, L.; Wheeler, K.; Wang, H. Angew. Chem., Int. Ed. 2011, 50, 3484.  doi: 10.1002/anie.201100160

    6. [6]

      Eftekhari-Sis, B.; Zirak, M. Chem. Rev. 2015, 115, 151.  doi: 10.1021/cr5004216

    7. [7]

      Liu, Q.-J.; Wang, L.-J.; Kang, Q.-K.; Zhang, X.-P.; Tang, Y. Angew. Chem., Int. Ed. 2016, 55, 9220.  doi: 10.1002/anie.201603911

    8. [8]

      Qin, J.-L.; Zhang, Y.-L.; Liu, G.-T.; Zhou, J.; Zhan, R.-T.; Chen, W.-W.; Huang, H. C. Org. Lett. 2019, 21, 7337.  doi: 10.1021/acs.orglett.9b02629

    9. [9]

      Guo, X.-K.; Liu, G.-F.; An, D.; Zhang, H.; Zhang, S.-Q. Org. Lett. 2019, 21, 5438.  doi: 10.1021/acs.orglett.9b01675

    10. [10]

      Thirupathi, N.; Wei, F.; Tung, C. H.; Xu, Z.-H. Nat. Commun. 2019, 10, 1.  doi: 10.1038/s41467-018-07882-8

    11. [11]

      Kano, T.; Maruyama, H.; Homma, C.; Maruoka, K. Chem. Commun. 2018, 54, 3496.  doi: 10.1039/C8CC01443D

    12. [12]

      Zhang, M.-J.; Wu, Z.-J.; Zhao, J.-Q.; Luo, Y.; Xu, X.-Y.; Zhang, X.-M.; Yuan, W. C. Org. Lett. 2016, 18, 5110.  doi: 10.1021/acs.orglett.6b02558

    13. [13]

      Yao, Q.; Yu, H.; Zhang, H.; Dong, S.-X.; Chang, F.-Z.; Lin, L.-L.; Liu, X.-H.; Feng, X.-M. Chem. Commun. 2018, 54, 3375.  doi: 10.1039/C8CC01040D

    14. [14]

      Jin, H.; Lee, J.; Shi, H.; Li, J. Y.; Yoo, E. J.; Song, C. E.; Dyu, D. U. Org. Lett. 2018, 20, 1584.  doi: 10.1021/acs.orglett.8b00331

    15. [15]

      Wang, L.; Lv, J.; Zhang, L.; Luo, S.-Z. Angew. Chem., Int. Ed. 2017, 56, 10867.  doi: 10.1002/anie.201704020

    16. [16]

      Li, S.-J.; Lv, J.; Luo, S.-Z. Org. Chem. Front. 2018, 5, 1787.  doi: 10.1039/C8QO00319J

    17. [17]

      Hao, X. Y.; Lin, L. L.; Tan, F.; Ge, S.-L.; Liu, X.-H.; Feng, X.-M. Org. Chem. Front. 2017, 4, 1647.  doi: 10.1039/C7QO00323D

    18. [18]

      Ren, H.; Song, X.-Y.; Wang, S. R.; Wang, L.-J.; Tang, Y. Org. Lett. 2018, 20, 3858.  doi: 10.1021/acs.orglett.8b01442

    19. [19]

      Kostenko, A. A.; Kucherenko, A. S.; Komogortsev, A. N.; Lichitsky, B. V.; Zlotin, S. G. Org. Biomol. Chem. 2018, 16, 9314.  doi: 10.1039/C8OB02523A

    20. [20]

      Tukhvatshin, R. S.; Kucherenko, A. S.; Nelyubina, Y. V.; Zlotin, S. G. J. Org. Chem. 2019, 84, 13824.  doi: 10.1021/acs.joc.9b02021

    21. [21]

      Lv, X.-J.; Zhao, W.-W.; Chen, Y.-H.; Wang, S.-B.; Liu, Y. K. Org. Chem. Front. 2019, 6, 1972.  doi: 10.1039/C9QO00366E

    22. [22]

      Tang, J.; Dong, X.-Y.; Ouyang, W.-L.; Zhu, Y.-L.; Ding, H.-X.; Xiao, Q. Chin. J. Org. Chem. 2019, 39, 2609 (in Chinese).
       

    23. [23]

      Huang, K.-X.; Xie, M.-S.; Zhang, Q.-Y.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2018, 20, 5398.  doi: 10.1021/acs.orglett.8b02309

    24. [24]

      Xu, J.-X.; Hu, L.-F.; Hu, H.-P.; Ge, S.-L.; Liu, X.-H.; Feng, X.-M. Org. Lett. 2019, 21, 1632.  doi: 10.1021/acs.orglett.9b00168

    25. [25]

      Wei, R.-B. Spiro Compound Chemistry, Chemical Industry Press, Beijing, 2007 (in Chinese).

    26. [26]

      Li, J.; Lin, L.-L.; Hu, B.; Lian, X.; Wang, G.; Liu, X.-H.; Feng, X.-M. Angew. Chem., Int. Ed. 2016, 55, 6075.  doi: 10.1002/anie.201601701

    27. [27]

      Hu, B.; Li, J.; Gao, W.-D.; Lin, Q. C.; Yang, J.; Lin, L.-L.; Liu, X.-H.; Feng, X.-M. Adv. Synth. Catal. 2018, 360, 2831.  doi: 10.1002/adsc.201800576

    28. [28]

      Gong, J.; Wan, Q.; Kang, Q. Adv. Synth. Catal. 2018, 360, 4031.  doi: 10.1002/adsc.201800492

    29. [29]

      Ge, S.-L.; Cao, W.-D.; Kang, T.-F.; Hu, B.; Zhang, H.; Su, Z.-S.; Liu, X.-H.; Feng, X.-M. Angew. Chem., Int. Ed. 2019, 58, 4017.  doi: 10.1002/anie.201812842

    30. [30]

      Kuang, Y.-L.; Shen, B.; Dai, L.; Yao, Q.; Liu, X.-H.; Lin, L.-L.; Feng, X.-M. Chem. Sci. 2018, 9, 688.  doi: 10.1039/C7SC02757E

    31. [31]

      Bai, M.; Chen, Y.-Z.; Cui, B.-D.; Xu, X.-Y.; Yuan, W.-C. Tetrahedron 2019, 75, 2155.  doi: 10.1016/j.tet.2019.02.036

    32. [32]

      Xu, C.-R.; Wang, K.-X.; Li, D. W.; Lin, L.-L.; Feng, X.-M. Angew. Chem., Int. Ed. 2019, 58, 1.  doi: 10.1002/anie.201813481

    33. [33]

      Cheng, Y.-Y.; Han, Y.-Z.; Li, P.-F. Org. Lett. 2017, 19, 4774.  doi: 10.1021/acs.orglett.7b02144

    34. [34]

      Li, S.-J.; Lv, J.; Luo, S.-Z. Acta Chim. Sinica 2018, 76, 869 (in Chinese).  doi: 10.7503/cjcu20170608

    35. [35]

      Cao, J.; Liu, Y.-J.; Zhang, Y.-M.; Wang, Z.-Y.; Xu, P.-F. Org. Chem. Front. 2019, 6, 674.

    36. [36]

      Tang, Q.; Fu, K.; Ruan, P.; Dong, S.-X.; Su, Z.-S.; Liu, X.-H.; Feng, X.-M. Angew. Chem., Int. Ed. 2019, 58, 11846.  doi: 10.1002/anie.201905533

    37. [37]

      Xiong, Q.; Lin, L.-L.; Zhao, Y.-H.; Lang, J.-W.; Liu, X.-H.; Feng, X.-M. J. Org. Chem. 2018, 83, 12527.  doi: 10.1021/acs.joc.8b01771

    38. [38]

      Zhao, X.-H.; Mei, H.-J.; Xiong, Q.; Fu, K.; Lin, L.-L.; Feng, X.-M. Chem. Commun. 2016, 52, 10692.  doi: 10.1039/C6CC05328A

    39. [39]

      Zhong, X.-R.; Lv, J.; Luo, S.-Z. Org. Lett. 2017, 19, 3331.  doi: 10.1021/acs.orglett.7b01577

    40. [40]

      Xie, L.; Yu, X.; Li, J.-Q.; Zhang, Z.-H.; Qin, Z.-H.; Fu, B. Eur. J. Org. Chem. 2017, 3, 657.

    41. [41]

      Chen, Y.; Cui. B. D.; Bai, M.; Han, W. Y.; Wan, N. W.; Chen, Y. Z. Tetrahedron 2019, 75, 2971.  doi: 10.1016/j.tet.2019.04.040

    42. [42]

      Bai, B.; Wang, L.; Yang, J.; Cai, L.-L.; Liu, Q.-J.; Xi, G.-L.; Zhao, Z.-W.; Mao, D.-B.; Chen, Z.-F. Chin. J. Org. Chem. 2019, 39, 1053 (in Chinese).
       

    43. [43]

      Chen, S.-R.; Wang, Y.-M.; Zhou, Z. H. J. Org. Chem. 2016, 81, 11432.  doi: 10.1021/acs.joc.6b02070

    44. [44]

      Liu, S.-S.; Xu, Z.-H.; Wang, X.; Zhu, H.-R.; Wang, M.-C. J. Org. Chem. 2019, 84, 13881.  doi: 10.1021/acs.joc.9b02046

    45. [45]

      Zhi, Y.-L.; Huang, J.-H.; Liu, N.; Tao, L.; Dou, X.-W. Org. Lett. 2017, 19, 2378.  doi: 10.1021/acs.orglett.7b00909

    46. [46]

      Li, P.-F.; Zhao, J.-L.; Li, F.-B.; Chan, A.-S. C.; Kwong, F. Y. Org. Lett. 2010, 12, 5616.  doi: 10.1021/ol102254q

    47. [47]

      Wei, A.-J.; Nie, J.; Zheng, Y.; Ma, J.-A. J. Org. Chem. 2015, 80, 3766.  doi: 10.1021/jo502741z

    48. [48]

      Li, P.-F.; Chan, S.-H.; Chan, A. S. C.; Yee, F. Adv. Synth. Catal. 2011, 353, 1179.  doi: 10.1002/adsc.201000982

    49. [49]

      Luo, W.-W.; Zhao, J.-N.; Ji, J.; Lin, L.-L.; Liu, X.-H.; Mei, H.-J. Chem. Commun. 2015, 51, 10042.  doi: 10.1039/C5CC02748A

    50. [50]

      Sun, J.-N.; Hu, Y.-B.; Li, Y.-N.; Zhang, S.; Zha, Z.-G.; Wang, Z.-Y. J. Org. Chem. 2017, 82, 5102.  doi: 10.1021/acs.joc.7b00159

    51. [51]

      Li, Y.-N.; Huang, Y.-K.; Gui, Y.; Sun, J.-N.; Li, J.-D.; Zha, Z.-G.; Wang, Z.-Y. Org. Lett. 2017, 19, 6416.  doi: 10.1021/acs.orglett.7b03299

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    6. [6]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    7. [7]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    8. [8]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    9. [9]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    14. [14]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    15. [15]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    16. [16]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    17. [17]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    18. [18]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(21)
  • Abstract views(1582)
  • HTML views(458)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return