Citation: Zhang Yahui, Liu Yang, Miao Jiankang, Hao Wenyan. Copper-Catalyzed Cascade Bicyclization of o-Alkenylphenyl Isothiocyanates with Sodium Azide Leading to the 5H-Benzo[d]tetrazolo[5, 1-b] [1, 3]thiazines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2426-2432. doi: 10.6023/cjoc201912036 shu

Copper-Catalyzed Cascade Bicyclization of o-Alkenylphenyl Isothiocyanates with Sodium Azide Leading to the 5H-Benzo[d]tetrazolo[5, 1-b] [1, 3]thiazines

  • Corresponding author: Hao Wenyan, wenyanhao@jxnu.edu.cn
  • Received Date: 25 December 2019
    Revised Date: 12 May 2020
    Available Online: 25 May 2020

    Fund Project: the Research Fund of Jiangxi provincial Education Department GJJ160285the Natural Science Foundation of Jiangxi Province 2018BAB203006Project supported by the National Natural Science Foundation of China (No. 21762023), the Natural Science Foundation of Jiangxi Province (No. 2018BAB203006) and the Research Fund of Jiangxi provincial Education Department (No. GJJ160285)National Natural Science Foundation of China 21762023

Figures(4)

  • A simple and efficient method for the preparation of 5H-benzo[d]tetrazolo[5, 1-b] [1, 3]thiazines has been developed. The transformation involved the copper(I)-catalyzed cascade bicyclization of o-alkenylphenyl isothiocyanates with sodium azide to afford corresponding products in moderate to good yields. This present strategy provides an effective way to construct small molecular N-, and S-heterocycles.
  • 加载中
    1. [1]

      (a) Ren, Q. C.; Zhang, S.; Gao, C.; Xu, Z.; Ding, J. W.; Huang, L.; Feng, L. S. World Notes Antibiot. 2017, 38, 238.
      (b) Xie, M. S.; Cheng, X.; Chen, Y. G.; Wu, X. X.; Qua, G. R.; Guo, H. M. Org. Biomol. Chem. 2018, 16, 6890.

    2. [2]

      (a) Peet, N. P.; Baugh, L. E.; Sunder, S.; Lewis, J, E.; Matthews, E. H.; Olberding, E. L.; Shah, D. N. J. Med. Chem. 1986, 29, 2403.
      (b) Li, G. Q.; Li, Z.; Lu, Y. H. Chin. J. Med. Chem. 1996, 6, 50.

    3. [3]

      Poonian, M. S.; Nowoswiat, E. F.; Blount, J. F. J. Med. Chem. 1976, 19, 1017.  doi: 10.1021/jm00230a008

    4. [4]

      Navidpour, L.; Shadnia, H.; Shafaroodi, H. Bioorg. Med. Chem. 2007, 15, 1976.  doi: 10.1016/j.bmc.2006.12.041

    5. [5]

      Singh, V. H.; Chawla, A. S.; Kapoor, V. K.; Paul, D.; Malhotra, R. K. Prog. Med. Chem. 1980, 17, 151.  doi: 10.1016/S0079-6468(08)70159-0

    6. [6]

      (a) Seco, J. M.; de Araújo Farias, M.; Bachs, N. M.; Caballero, A. B.; Salinas-Castillo, A.; Rodríguez Diéguez, A. Inorg. Chim. Acta 2010, 363, 3194.
      (b) Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc. 2003, 125, 9983.
      (c) Fischer, N.; Karaghiosoff, K.; Klapotke, T. M.; Stierstorfer, J. Z. Anorg. Allg. Chem. 2010, 636, 735.
      (d) Klapötke, T. M.; Sabaté, C. M.; Welch, J. M. Eur. J. Inorg. Chem. 2009, 6, 769.
      (e) List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395.
      (f) Odedra, A.; Seeberger, P. H. Angew. Chem., Int. Ed. 2009, 48, 2699.

    7. [7]

      (a) Yella, R.; Khatun, N.; Rout, S. K.; Patel, B. K. Org. Biomol. Chem. 2011, 9, 3235.
      (b) Seelam, M.; Kammela, P. R.; Shaikh, B.; Tamminana, R.; Bogiri, S. Chem. Heterocycl. Compd. 2018, 54, 535.
      (c) Mandapati, U.; Mandapati, P.; Pinapati, S.; Tamminana, R.; Rudraraju, R. Synth. Commun. 2018, 48, 500.
      (d) L'abbé, G.; Verhelst, G.; Toppet, S. J. Org. Chem. 1977, 42, 1159.
      (e) Han, S. Y.; Lee, J. W.; Kim, H.; Kim, Y.; Lee, S. W.; Gyoung, Y. S. Bull. Korean Chem. Soc. 2012, 33, 55.
      (f) Majji, G.; Sahoo, S. K.; Khatun, N.; Patel, B. K. Eur. J. Org. Chem. 2015, 7534.
      (g) Guin, S.; Rout, S. K.; Gogoi, A.; Nandi, S.; Ghara, K. K.; Patel, B. K. Adv. Synth. Catal. 2012, 354, 2757.
      (h) Batey, R. A.; Powell, D. A. Org. Lett. 2000, 2, 3237.
      (i) Sathishkumar, M.; Shanmugavelan, P.; Nagarajan, S.; Dinesh, M.; Ponnuswamy, A. New J. Chem. 2013, 37, 488.

    8. [8]

      (a) Hantzsch, A.; Vagt, A. Annalen 1901, 314, 339.
      (b) Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945.
      (c) Demko, Z. P.; Sharpless, K. B. Org. Lett. 2001, 3, 4091.
      (d) Demko, Z. P.; Sharpless, K. B. Org. Lett. 2002, 4, 2525.
      (e) Batey, R. A.; Powell, D. A. Org. Lett. 2000, 2, 3237.
      (f) Kadaba, P. K. J. Org. Chem. 1976, 41, 1073.
      (g) Gyoung, Y. S.; Shim, J. G.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 4193.
      (h) Mancheno, O. G.; Bolm, C. Org. Lett. 2007, 9, 2951.
      (i) Gutmann, B.; Roduit, J. P.; Roberge, D.; Kappe, C. O. Angew. Chem., Int. Ed. 2010, 49, 7101.
      (j) Razzaq, T.; Kappe, C. O. Chem.-Asian J. 2010, 5, 1274.
      (k) Bonnamour, J.; Bolm, C. Chem.-Eur. J. 2009, 15, 4543.
      (l) Lang, L. M.; Li, B. J.; Liu, W.; Jiang, L.; Xu, Z.; Yin, G. Chem. Commun. 2010, 46, 448.
      (m) Kantam, M. L.; Shiva Kumar, K. B.; Sridhar, C. Adv. Synth. Catal. 2005, 347, 1212.
      (n) Alterman, M.; Hallberg. A. J. Org. Chem. 2000, 65, 7984.
      (o) Finnegan, W. G.; Henry, R. A.; Lofquist, R. J. Am. Chem. Soc. 1958, 80, 3908.

    9. [9]

      Miao, J. K.; Zhang, Y. H.; Sang, X. Y.; Hao, W. Y. Org. Biomol. Chem. 2019, 17, 2336.  doi: 10.1039/C8OB03220C

    10. [10]

      (a) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
      (b) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.
      (c) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
      (d) Chemler, S. R.; Fuller, P. H. Chem. Soc. Rev. 2007, 36, 1153.(e
      ) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249.
      (f) Jerphagnon, T.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2009, 38, 1039.
      (g) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13.
      (h) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
      (i) Yuan, C. C.; Tu, G. L.; Zhao, Y. S. Org. Lett. 2017, 19, 356.
      (c) Tu, G. L.; Yuan, C. C.; Li, Y. T.; Zhang, J. Y.; Zhao, Y. S. Angew. Chem., Int. Ed. 2018, 57, 15597.

    11. [11]

      (a) Rao, R. K.; Naidu, A. B.; Sekar, G. Org. Lett. 2009, 11, 1923.
      (b) Bhadra, S.; Adak, L.; Samanta, S.; Islam, A. K. M. M.; Mukherjee, M.; Ranu, B. C. J. Org. Chem. 2010, 75, 8533.
      (c) Melkonyan, F.; Topolyan, A.; Karchava, A.; Yurovskaya, V. Tetrahedron 2011, 67, 6826.
      (d) Jangili, P.; Kashanna, J.; Das, B. Tetrahedron Lett. 2013, 54, 3453.
      (e) Liu, Z.; Chen, Y. Tetrahedron Lett. 2009, 50, 3790.
      (f) Feng, E.; Huang, H.; Zhou, Y.; Ye, D.; Jiang, H.; Liu, H. J. Org. Chem. 2009, 74, 2846.
      (g) Chen, D.; Shen, G.; Bao, W. Org. Biomol. Chem. 2009, 7, 4067.
      (h) Sequeira, F. C.; Chemler, S. R. Org. Lett. 2012, 14, 4482.
      (i) Deb, M. L.; Dey, S. S.; Bento, I.; Barros, M. T.; Maycock, C. D. Angew. Chem., Int. Ed. 2013, 52, 9791.
      (j) Xiong, T.; Li, Y.; Bi, X.; Lv, Y.; Zhang, V. Angew. Chem., Int. Ed. 2011, 50, 7140.
      (k) Li, Y.; Li, Z.; Xiong, T.; Zhang, Q.; Zhang, X. Org. Lett. 2012, 14, 3522.

    12. [12]

      (a) Basak, A.; Ghosh, S. C.; Bhowmick, T.; Das, A. K.; Bertolasi, V. Tetrahedron Lett. 2002, 43, 5499.
      (b) Khangarot, R. K.; Kaliappan, K. P. Eur. J. Org. Chem. 2011, 6117.
      (c) Grzeszczyk, B.; Polawska, K.; Shaker, Y. M.; Stecko, S.; Mames, A.; Woznica, M.; Chmielewski, M.; Furman, B. Tetrahedron 2012, 68, 10633.
      (d) Saito, T.; Kikuchi, T.; Tanabe, H.; Yahiro, J.; Otani, T. Tetrahedron Lett. 2009, 50, 4969.
      (e) Mames, A.; Stecko, S.; Mikolajczyk, P.; Soluch, M.; Furman, B.; Chmielewski, M. J. Org. Chem. 2010, 75, 7580.
      (f) Ye, M. C.; Zhou, J.; Tang, Y. J. Org. Chem. 2006, 71, 3576.
      (g) Stecko, S.; Mames, A.; Furman, B.; Chmielewski, M. J. Org. Chem. 2009, 74, 3094.
      (h) Zhang, X.; Hsung, R. P.; Li, H.; Zhang, Y.; Johnson, W. L.; Figueroa, R. Org. Lett. 2008, 10, 3477.
      (i) Lo, M. M. C.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572.
      (j) Shintani, R.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 4082.
      (k) Ye, M. C.; Zhou, J.; Huang, Z. Z.; Tang, Y. Chem. Commun. 2003, 2554.
      (l) Zhao, L.; Li, C. J. Chem.-Asian J. 2006, 1, 203.
      (m) Liang, J.; Chen, J.; Du, F.; Zeng, X.; Li, L.; Zhang, H. Org. Lett. 2009, 11, 2820.

    13. [13]

      (a) Ma, D.; Geng, Q.; Zhang, H.; Jiang, Y. Angew. Chem., Int. Ed. 2010, 49, 1291.
      (b) Dai, C.; Sun, X.; Tu, X.; Wu, L.; Zhan, D.; Zeng, Q. Chem. Commun. 2012, 48, 5367.
      (c) Yang, D.; Liu, H.; Yang, H.; Fu, H.; Hu, L.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2009, 351, 1999.
      (d) Chen, D.; Wu, J.; Yang, J.; Huang, L.; Xiang, Y.; Bao, W. Tetrahedron Lett. 2012, 53, 7104.
      (e) Huang, W. S.; Xu, R.; Dodd, R.; Shakespeare, W. C. Tetrahedron Lett. 2013, 54, 5214.
      (f) Chen, D.; Wang, Z. J.; Bao, W. J. Org. Chem. 2010, 75, 5768.
      (g) Kaneko, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Org. Lett. 2013, 15, 2502.
      (h) Shen, C.; Zhang, P. F.; Sun, Q.; Bai, S. Q.; Andy Hor, T. S.; Liu, X. G. Chem. Soc. Rev. 2015, 44, 291.
      (i) Kaiser, D.; Klodr, I.; Oost, R.; Neuhaus, J.; Maulide, N. Chem. Rev. 2019, 119, 8701.
      (j) Sangeetha, S.; Muthupandi, P.; Sekar, G. Org. Lett. 2015, 17, 6006.
      (k) Soria-Castro, S.; Andrada, D. M.; Caminos, D. A.; Argüello, J. E.; Robert, M.; Peñéñory, A. B. J. Org. Chem. 2017, 82, 11464.

    14. [14]

      (a) Duran, F.; Leman, L.; Ghini, A.; Burton, G.; Dauban, P.; Dodd, R. H. Org. Lett. 2002, 4, 2481.
      (b) Allen, S. E.; Walvoord, R. R.; Padillasalinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.

    15. [15]

      (a) Hao, W. Y.; Zeng, J. B.; Cai, M. Z. Chem. Commun. 2014, 50, 11686.
      (b) Hao, W. Y.; J. Huang, J.; Jie, S. S.; Cai, M. Z. Eur. J. Org. Chem. 2015, 6655.
      (c) Hao, W. Y.; Sang, X. Y.; J. Jiang, J.; Cai, M. Z. Tetrahedron Lett. 2016, 57, 1511.
      (d) Hao, W. Y.; Sang, X. Y.; Jiang, J.; Cai, M. Z. Tetrahedron Lett. 2016, 57, 4207.
      (e) Hao, W. Y.; Jiang, Y. Y.; Cai, M. Z. J. Org. Chem. 2014, 79, 3634.

    16. [16]

      (a) Miao, J. K.; Sang, X. Y.; Wang, Y.; Deng, S.
      F.; Hao, W. Y. Org. Biomol. Chem. 2019, 17, 6994.
      (b) Hao, W. Y.; Zhang, T. L.; Cai, M. Z. Tetrahedron 2013, 69, 9219.
      (c) Zou, F. H.; Chen, X. W.; Hao, W. Y. Tetrahedron 2017, 73, 758.
      (d) Hao, W. Y.; Tian, J.; Li, W.; Shi, R. Y.; Huang, Z. L.; Lei, A. W. Chem.-Asian J. 2016, 11, 1664.
      (e) Hao, W. Y.; Sha, Y. C.; Deng, Y.; Luo, Y.; Zeng, L.; Tang, S.; Weng, Y.; Chiang, C.-W.; Lei, A. W. Chem.-Eur. J. 2019, 25, 4931.

    17. [17]

      (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581.
      (b) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.

    18. [18]

      (a) Benati, L.; Calestani, G.; Leadini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Stazzari, S.; Zanardi, G. J. Org. Chem. 2003, 68, 3454.
      (b) Saito, T.; Nihei, H.; Otani, T.; Suyama, T.; Furukawa, N.; Saito, M. Chem. Commun. 2008, 172.

  • 加载中
    1. [1]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    2. [2]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    3. [3]

      Ji-Jia ZhouLi-Gao LiuZhen-Tao ZhangHao-Xuan DongXin LuZhou XuXin-Qi ZhuBo ZhouLong-Wu Ye . Copper-catalyzed asymmetric cascade diyne cyclization/Meinwald rearrangement. Chinese Chemical Letters, 2025, 36(9): 110870-. doi: 10.1016/j.cclet.2025.110870

    4. [4]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    5. [5]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    6. [6]

      Yingtao ZhongZiwen QiuYanmei LiJiaqi HuangZhenming LuRenjiang KongNi YanHong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846

    7. [7]

      Chenxi ShangBoxuan LuChongbei WuShuqing ZhouLuyan ShiTayirjan Taylor IsimjanXiulin Yang . Inducing electronic rearrangement through Co3B-Mo2B5 catalysts: Efficient dual-function catalysis for NaBH4 hydrolysis and 4-nitrophenol reduction. Chinese Chemical Letters, 2025, 36(9): 111152-. doi: 10.1016/j.cclet.2025.111152

    8. [8]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    9. [9]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    10. [10]

      Ruyan LiuZhenrui NiOlim RuzimuradovKhayit TurayevTao LiuLuo YuPanyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159

    11. [11]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    12. [12]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    13. [13]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    14. [14]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    15. [15]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    16. [16]

      Hongping ZhaoWeiming Yuan . Merging catalytic electron donor-acceptor complex and copper catalysis: Enantioselective radical carbocyanation of alkenes. Chinese Chemical Letters, 2025, 36(10): 110894-. doi: 10.1016/j.cclet.2025.110894

    17. [17]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    18. [18]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    19. [19]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    20. [20]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

Metrics
  • PDF Downloads(7)
  • Abstract views(1304)
  • HTML views(171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return