Citation: Huang Yongkang, Xie Wenjing, Luo Yongqiang, Fan Qiqi, Zhu Xingliang, Liu Shiling, Shi Xiaoxin. First Total Syntheses of 1-Benzoyl-3, 4-dihydroisoquinoline Alkaloids Nelumstemine and Longifolonine Based on the Photo-oxidation[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1281-1289. doi: 10.6023/cjoc201912002 shu

First Total Syntheses of 1-Benzoyl-3, 4-dihydroisoquinoline Alkaloids Nelumstemine and Longifolonine Based on the Photo-oxidation

  • Corresponding author: Liu Shiling, liushiling@tenrypharm.com Shi Xiaoxin, xxshi@ecust.edu.cn
  • Received Date: 2 December 2019
    Revised Date: 10 January 2020
    Available Online: 14 February 2020

    Fund Project: the National Natural Science Foundation of China 20172015Project supported by the National Natural Science Foundation of China (Nos. 20972048, 20172015)the National Natural Science Foundation of China 20972048

Figures(5)

  • A novel synthetic route for the total syntheses of 1-benzoyl-3, 4-dihydroisoquinoline alkaloids was developed. Nelumstemine was synthesized for the first time via 6 steps in 50% overall yield starting from 3, 4-dimethoxybenzaldehyde, and longifolonine was also synthesized for the first time via 9 steps in 35% overall yield starting from vanillin. The key step of these total syntheses is photo-oxidation of 1-benzyl-3, 4-dihydroisoquinolines to 1-benzoyl-3, 4-dihydroisoquinolines by air under visible-light irradiation at room temperature. The unique mild photo-oxidation of 1-benzyl-3, 4-dihydro-isoquinolines has been studied in detail.
  • 加载中
    1. [1]

      Marinho, A. F.; Oliveira, E. D. J.; Tavares, J. F.; Filho, R. B.; Barbosa-Filho, J. M. Magn. Reson. Chem. 2013, 51, 312.
      (b) Sulaiman, S. N.; Mukhtar, M. R.; Hadi, A. H. A.; Awang, K.; Hazni, H.; Zahari, A.; Litaudon, M.; Zaima, K.; Morita, H. Molecules 2011, 16, 3119.
      (c) Dang, Y.; Gong, H. F.; Liu, J. X.; Yu, S. J. Chin. Chem. Lett. 2009, 20, 1218.
      (d) Zhang, H.; Yue, J.-M. Nat. Prod. Res. 2006, 20, 553.
      (e) Chen, B.; Feng, C.; Li, B.-G.; Zhang, G.-L. Nat. Prod. Res. 2003, 17, 397.
      (f) Lira, G. A. d.; Andrade, L. M. d.; Florencio, K. C.; Silva, M. S. d.; Barbosa-Filho, J. M.; da-Cunha, E. V. L. Fitoterapia 2002, 73, 356.
      (g) Lebceuf, M.; Ranaivo, A.; Cave, A.; Moskowitz, H. J. Nat. Prod. 1989, 52, 516.
      (h) Valencia, E.; Weiss, I.; Shamma, M.; Urzua, A.; Fajardo, V. J. Nat. Prod. 1984, 47, 1050.

    2. [2]

      Duan, X. H.; Jiang, J. Q. Chin. Chem. Lett. 2008, 19, 308.  doi: 10.1016/j.cclet.2008.01.013

    3. [3]

      Bick, I. R. C.; Sevenet, T.; Sinchai, W.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1981, 34, 195.  doi: 10.1071/CH9810195

    4. [4]

      Nishiyama, Y.; Moriyasu, M.; Ichimaru, M.; Iwasa, K.; Kato, A.; Mathenge, S. G.; Mutiso, P. B. C.; Juma, F. D. Phytochemistry 2006, 67, 2671.  doi: 10.1016/j.phytochem.2006.07.011

    5. [5]

      (a) Salim, A. A.; Bidin, N.; Lafi, A. S.; Huyop, F. Z. Mater. Design 2017, 132, 486.
      (b) Yogendra, K. N.; Dhokane, D.; Kushalappa, A. C.; Sarmiento, F.; Rodriguez, E.; Mosquera, T. Plant Sci. 2017, 256, 208.
      (c) Bermejo, A.; Andreu, I.; Suvire, F.; Leonce, S.; Caignard, D. H.; Renard, P.; Pierre, A.; Enriz, R. D.; Cortes, D.; Cabedo, N. J. Med. Chem. 2002, 45, 5058.

    6. [6]

      Yang, J.; Dong, J.; Lu, X.; Zhang, Q.; Ding, W.; Shi, X. Chin. J. Chem. 2012, 30, 2827.  doi: 10.1002/cjoc.201201094

    7. [7]

      Crestey, F.; Jensen, A. A.; Borch, M.; Andreasen, J. T.; Andersen, J.; Balle, T.; Kristensen, J. L. J. Med. Chem. 2013, 56, 9673.  doi: 10.1021/jm4013592

    8. [8]

      Jetter, M. C.; Youngman, M. A.; McNally, J. J; McDonnell, M. E.; Zhang, S.-P.; Dubin, A. E.; Nasser, N.; Codd, E. E.; Flores, C. M.; Dax, S. L. Bioorg. Med. Chem. Lett. 2007, 17, 6160.

    9. [9]

    10. [10]

      Ullah, S.; Park, C.; Ikram, M.; Kang, D.; Lee, S.; Yang, J.; Park, Y.; Yoon, S.; Chun, P.; Moon, H. R. Bioorg. Chem. 2019, 87, 43.  doi: 10.1016/j.bioorg.2019.03.001

    11. [11]

      Mastihubova, M.; Polakova, M. Beilstein J. Org. Chem. 2016, 12, 524.  doi: 10.3762/bjoc.12.51

    12. [12]

      (a) Taylor, W. I. Tetrahedron 1961, 14, 42.
      (b) Martin, N. H.; Champion, S. L.; Belt, P. B. Tetrahedron Lett. 1980, 21, 2613.
      (c) Kessar, S. V.; Mohammad, T.; Gupta, Y. P. Indian J. Chem., Sect. B 1983, 22, 321.
      (d) Kuo, R.-Y.; Chang, F.-R.; Wu, C.-C.; Patnam, R.; Wang, W.-Y.; Du, Y.-C.; Wu, Y.-C. Bioorg. Med. Chem. Lett. 2003, 13, 2789.
      (e) Lenz, G. R.; Costanza, C. J. Org. Chem. 1988, 53, 1176.
      (f) Martin, N. H.; Jefford, C. W. Helv. Chim. Acta 1982, 65, 762.
      (g) Wakchaure, P. B.; Argade, N. P. Synthesis 2008, 2321.
      (h) Andreu, I.; Cabedo, N.; Atassi, G.; Pierre, A.; Caignard, D. H.; Renard, P.; Cortes, D.; Bermejo, A. Tetrahedron Lett. 2002, 43, 757.

    13. [13]

      Awuah, E.; Capretta, A. J. Org. Chem. 2010, 75, 5627.  doi: 10.1021/jo100980p

    14. [14]

      Garcia, M. D.; Wilson, A. J.; Emmerson, D. P. G.; Jenkins, P. R. Chem. Commun. 2006, 2586.

    15. [15]

      (a) Clark, R. A.; Parker, D. C. J. Am. Chem. Soc. 1971, 93, 7257.
      (b) Lu, S.-P.; Lewin, A. H. Tetrahedron 1998, 54, 15097.

    16. [16]

      Choi, M. F.; Hawkins, P. Spectrochim. Acta 1995, 51A, 579.

    17. [17]

      (a) Bayer, P.; Perez-Ruiz, R.; Wangelin, A. J. V. ChemPhotoChem 2008, 2, 559.
      (b) Tambosco, B.; Segura, K.; Seyrig, C.; Cabrera, D.; Port, M.; Ferroud, C.; Amara, Z. ACS Catal. 2018, 8, 4383.

    18. [18]

      (a) Maeda, K.; Nakamura, M.; Sakai, M. J. Chem. Soc., Perkin Trans. 1 1983, 837.
      (b) Mori, Y.; Maeda, K. Bull. Chem. Soc. Jpn. 1994, 67, 1204.

    19. [19]

      Rice, K. C.; Brossi, A. J. Org. Chem. 1980, 45, 592.  doi: 10.1021/jo01292a008

    20. [20]

      Rozwadowska, M. D.; Chrzanowska, M.; Brossi, A.; Creveling, C. R.; Bembenek, M. E.; Abell, C. W. Helv. Chim. Acta 1988, 71, 1598.  doi: 10.1002/hlca.19880710703

    21. [21]

      Zhu, R.; Xu, Z.; Ding, W.; Liu, S.; Shi, X.; Lu, X. Chin. J. Chem. 2014, 32, 1039.  doi: 10.1002/cjoc.201400471

    22. [22]

      Weisbach, J. A.; Kirkpatrick, J. L.; Macko, E.; Douglas, B. J. Med. Chem. 1968, 11, 752.  doi: 10.1021/jm00310a605

    23. [23]

      Zhao, B.-X.; Yu, Y.; Eguchi, S. Org. Prep. Proc. Int. 1997, 29, 185.  doi: 10.1080/00304949709355182

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    3. [3]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    4. [4]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    12. [12]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    16. [16]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    18. [18]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

Metrics
  • PDF Downloads(9)
  • Abstract views(1846)
  • HTML views(294)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return