Citation: Zhang Shunji, Liu Huili. Sulfuric Acid Catalyzed Rapid Nucleophilic Substitution of Propargyl Alcohols[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1257-1265. doi: 10.6023/cjoc201911036 shu

Sulfuric Acid Catalyzed Rapid Nucleophilic Substitution of Propargyl Alcohols

  • Corresponding author: Zhang Shunji, sjzhang@chnu.edu.cn
  • Received Date: 27 November 2019
    Revised Date: 6 January 2020
    Available Online: 21 January 2020

Figures(1)

  • Sulfuric acid efficiently catalyzes the direct substitution of the hydroxyl group of propargylic alcohols with a variety of C- and O-based nucleophiles to aid C-C and C-O bond formation. The reactions can be performed in an undried solvent under air atmosphere to obtain the desired products in good yields. In most cases, the reaction proceeds to completion in 1 min at room temperature.
  • 加载中
    1. [1]

    2. [2]

      (a) Georgy, M.; Boucard, V.; Campagne, J. J. Am. Chem. Soc. 2005, 127, 14180.
      (b) Trost, B. Acc. Chem. Res. 2002, 35, 695.
      (c) Georgy, M.; Boucard, V.; Campagne, J. J. Am. Chem. Soc. 2005, 127, 14180.
      (d) Emer, E.; Sinisi, R.; Capdevila, M. G.; Petruzziello, D.; Vincentiis, F. D.; Cozzi, P. G. Eur. J. Org. Chem. 2011, 647.

    3. [3]

      (a) Nicholas, K. M.; Mulvaney, M.; Bayer, M. J. Am. Chem. Soc. 1980, 102, 2508.
      (b) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207.
      (c) Berge, J.; Claridge, S.; Mann, A.; Muller, C.; Tyrrell, E. Tetrahedron Lett. 1997, 38, 685.
      (d) Kuhn, O.; Rau, D.; Mayr, H. J. Am. Chem. Soc. 1998, 120, 900.
      (e) Montana, A. M.; Fernandez, D. Tetrahedron Lett. 1999, 40, 6499.
      (f) Teobald, B. J. Tetrahedron 2002, 58, 4133.

    4. [4]

      (a) Sherry, B. D.; Radosevich, A. T.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 15760.
      (b) Kennedy-Smith, J. J.; Young, L. A.; Toste, F. D. Org. Lett. 2004, 6, 1325.
      (c) Ohri, R. V.; Radosevich, A. T.; Hrovat, K. J.; Musich, C.; Huang, D.; Holman, T. R. Org. Lett. 2005, 7, 2501.

    5. [5]

      (a) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 11019.
      (b) Nishibayashi, Y.; Wakiji, I.; Ishii, Y.; Uemura, S.; Hidai, M. J. Am. Chem. Soc. 2001, 123, 3393.
      (c) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 11846.
      (d) Inada, Y.; Nishibayashi, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 15172.
      (e) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 14, 11846.
      (f) Nishibayashi, Y.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2003, 125, 6060.
      (g) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 1495.
      (h) Cadierno, V.; Diez, J.; Garcia-Garrido, S. E.; Gimerno, J. Chem. Commun. 2004, 2716.
      (i) Fischmeister, C.; Toupet, L.; Dixneuf, P. H. New J. Chem. 2005, 29, 765.
      (j) Nishibayashi, Y.; Milton, M. D.; Inada, Y.; Yoshikawa, M.; Wakiji, I.; Hidai, M.; Uemura, S. Chem.-Eur. J. 2005, 11, 1433.
      (k) Nishibayashi, Y.; Uemura, S. Curr. Org. Chem. 2006, 10, 135.
      (l) Bustelo, E.; Dixneuf, P. H. Adv. Synth. Catal. 2007, 349, 933.

    6. [6]

      (a) Zhan, Z.; Yang, W.; Yang, R.; Yu, J.; Li, J.; Liu, H. Chem. Commun. 2006, 3352.
      (b) Jana, U.; Maiti, S.; Biswas, S. Tetrahedron Lett. 2007, 48, 7160.
      (c) Yan, W.; Wang, Q.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2010, 12, 3308.
      (d) Mantione, R. Bull. Soc. Chim. Fr. 1969, 4514.
      (e) Hayashi, M.; Inbushi, A.; Mukaiyama, T. Bull. Soc. Chem. Jpn. 1988, 61, 4037.
      (f) Shi, M.; Shouki, K.; Okamoto, Y.; Takamuku, S. J. Chem. Soc., Perkin Trans. 1 1990, 2443.
      (g) Burgess, K.; Jennings, L. D. J. Am. Chem. Soc. 1991, 6129.

    7. [7]

      (a) Zhang, X.; Teo, W.; Chan, W. Org. Lett. 2009, 11, 4990.
      (b) Gohain, M.; Marais, C.; Bezuidenhoudt, B. C. Tetrahedron Lett. 2012, 53, 1048.

    8. [8]

      (a) Sanz, R.; Martínez, A.; Álvarez-Gutiérrez, J.; Rodríguez, F. Eur. J. Org. Chem. 2006, 1383.
      (b) Sanz, R.; Miguel, D.; Martínez, A.; Álvarez-Gutiérrez, J.; Rodríguez, F. Org. Lett. 2007, 9, 727.
      (c) Sanz, R.; Miguel, D.; Martínez, A.; Gohain, M.; García-García, P.; Fernández-Rodríguez, M.; Álvarez, E.; Rodríguez, F. Eur. J. Org. Chem. 2010, 7027.
      (d) Gangadhararao, G.; Uruvakilli, A.; Kumara Swamy, K. C. Org. Lett. 2014, 16, 6060.
      (e) Zhang, X.; Teng, W.; Sally, T.; Wai, P.; Chan, H. J. Org. Chem. 2010, 75, 6290.
      (f) Wang T.; Chen X.; Chen L.; Zhan Z. Org. Lett. 2011, 13, 3324.

    9. [9]

      Barreiro, E.; Vidal, A. S.; Tan, E.; Lau, S.; Sheppard, T. D.; González, S. D. Eur. J. Org. Chem. 2015, 7544.
       

    10. [10]

      Savarimuthu, S. A.; Prakash, D. L.; Thomas, S. A. Tetrahedron Lett. 2014, 55, 3213.  doi: 10.1016/j.tetlet.2014.02.086

    11. [11]

      Yokosaka, T.; Shiga, N.; Nemoto, T.; Hamada, Y. J. Org. Chem. 2014, 79, 3866.  doi: 10.1021/jo500308y

    12. [12]

      Wang, L.; Xie, X.; Liu, Y. Org. Lett. 2012, 23, 5848.
       

    13. [13]

      (a) Shaterian, H. R.; Yarahmadi, H.; Ghashang, M. Tetrahedron 2008, 64, 1263.
      (b) Murugan, K.; Chen, C. Tetrahedron Lett. 2011, 52, 5827.

    14. [14]

      (a) Yadav, J. S.; Reddy, B. V. S.; Reddy, A. S. J. Mol. Catal. A: Chem. 2008, 280, 219.
      (b) Srihari, P.; Reddy, J. S. S.; Bhunia, D. C.; Mandal, S. S.; Yadav, J. S. Synth. Commun. 2008, 38, 1448.
      (c) Srihari, P.; Reddy, J. S. S.; Mandal, S. S.; Satyanarayana, K.; Yadav, J. S. Synthesis 2008, 1853.
      (d) Jang, S.; Kim, A. Y.; Seo, W. S.; Park, K. H. Nanoscale Res. Lett. 2015, 10, 2.

    15. [15]

      Antonino, J. R. C.; Prez, A. L.; Corma, A. Angew. Chem., Int. Ed. 2015, 54, 5658.

    16. [16]

      Yadav, J. S.; Reddy, B. V. S.; Narayanakumar, G. G. K. S.; Rao, K. V. R. Chem. Lett. 2007, 36, 942.  doi: 10.1246/cl.2007.942

    17. [17]

      Gujarathi, S.; Hendrickson, H. P.; Zheng, G. Tetrahedron Lett. 2013, 54, 3550.  doi: 10.1016/j.tetlet.2013.04.120

  • 加载中
    1. [1]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    7. [7]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    8. [8]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    11. [11]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    12. [12]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    13. [13]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    14. [14]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    15. [15]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    16. [16]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    17. [17]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    20. [20]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

Metrics
  • PDF Downloads(13)
  • Abstract views(1124)
  • HTML views(241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return