Citation: Zhang Shunji, Liu Huili. Sulfuric Acid Catalyzed Rapid Nucleophilic Substitution of Propargyl Alcohols[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1257-1265. doi: 10.6023/cjoc201911036 shu

Sulfuric Acid Catalyzed Rapid Nucleophilic Substitution of Propargyl Alcohols

  • Corresponding author: Zhang Shunji, sjzhang@chnu.edu.cn
  • Received Date: 27 November 2019
    Revised Date: 6 January 2020
    Available Online: 21 January 2020

Figures(1)

  • Sulfuric acid efficiently catalyzes the direct substitution of the hydroxyl group of propargylic alcohols with a variety of C- and O-based nucleophiles to aid C-C and C-O bond formation. The reactions can be performed in an undried solvent under air atmosphere to obtain the desired products in good yields. In most cases, the reaction proceeds to completion in 1 min at room temperature.
  • 加载中
    1. [1]

    2. [2]

      (a) Georgy, M.; Boucard, V.; Campagne, J. J. Am. Chem. Soc. 2005, 127, 14180.
      (b) Trost, B. Acc. Chem. Res. 2002, 35, 695.
      (c) Georgy, M.; Boucard, V.; Campagne, J. J. Am. Chem. Soc. 2005, 127, 14180.
      (d) Emer, E.; Sinisi, R.; Capdevila, M. G.; Petruzziello, D.; Vincentiis, F. D.; Cozzi, P. G. Eur. J. Org. Chem. 2011, 647.

    3. [3]

      (a) Nicholas, K. M.; Mulvaney, M.; Bayer, M. J. Am. Chem. Soc. 1980, 102, 2508.
      (b) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207.
      (c) Berge, J.; Claridge, S.; Mann, A.; Muller, C.; Tyrrell, E. Tetrahedron Lett. 1997, 38, 685.
      (d) Kuhn, O.; Rau, D.; Mayr, H. J. Am. Chem. Soc. 1998, 120, 900.
      (e) Montana, A. M.; Fernandez, D. Tetrahedron Lett. 1999, 40, 6499.
      (f) Teobald, B. J. Tetrahedron 2002, 58, 4133.

    4. [4]

      (a) Sherry, B. D.; Radosevich, A. T.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 15760.
      (b) Kennedy-Smith, J. J.; Young, L. A.; Toste, F. D. Org. Lett. 2004, 6, 1325.
      (c) Ohri, R. V.; Radosevich, A. T.; Hrovat, K. J.; Musich, C.; Huang, D.; Holman, T. R. Org. Lett. 2005, 7, 2501.

    5. [5]

      (a) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 11019.
      (b) Nishibayashi, Y.; Wakiji, I.; Ishii, Y.; Uemura, S.; Hidai, M. J. Am. Chem. Soc. 2001, 123, 3393.
      (c) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 11846.
      (d) Inada, Y.; Nishibayashi, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 15172.
      (e) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 14, 11846.
      (f) Nishibayashi, Y.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2003, 125, 6060.
      (g) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 1495.
      (h) Cadierno, V.; Diez, J.; Garcia-Garrido, S. E.; Gimerno, J. Chem. Commun. 2004, 2716.
      (i) Fischmeister, C.; Toupet, L.; Dixneuf, P. H. New J. Chem. 2005, 29, 765.
      (j) Nishibayashi, Y.; Milton, M. D.; Inada, Y.; Yoshikawa, M.; Wakiji, I.; Hidai, M.; Uemura, S. Chem.-Eur. J. 2005, 11, 1433.
      (k) Nishibayashi, Y.; Uemura, S. Curr. Org. Chem. 2006, 10, 135.
      (l) Bustelo, E.; Dixneuf, P. H. Adv. Synth. Catal. 2007, 349, 933.

    6. [6]

      (a) Zhan, Z.; Yang, W.; Yang, R.; Yu, J.; Li, J.; Liu, H. Chem. Commun. 2006, 3352.
      (b) Jana, U.; Maiti, S.; Biswas, S. Tetrahedron Lett. 2007, 48, 7160.
      (c) Yan, W.; Wang, Q.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2010, 12, 3308.
      (d) Mantione, R. Bull. Soc. Chim. Fr. 1969, 4514.
      (e) Hayashi, M.; Inbushi, A.; Mukaiyama, T. Bull. Soc. Chem. Jpn. 1988, 61, 4037.
      (f) Shi, M.; Shouki, K.; Okamoto, Y.; Takamuku, S. J. Chem. Soc., Perkin Trans. 1 1990, 2443.
      (g) Burgess, K.; Jennings, L. D. J. Am. Chem. Soc. 1991, 6129.

    7. [7]

      (a) Zhang, X.; Teo, W.; Chan, W. Org. Lett. 2009, 11, 4990.
      (b) Gohain, M.; Marais, C.; Bezuidenhoudt, B. C. Tetrahedron Lett. 2012, 53, 1048.

    8. [8]

      (a) Sanz, R.; Martínez, A.; Álvarez-Gutiérrez, J.; Rodríguez, F. Eur. J. Org. Chem. 2006, 1383.
      (b) Sanz, R.; Miguel, D.; Martínez, A.; Álvarez-Gutiérrez, J.; Rodríguez, F. Org. Lett. 2007, 9, 727.
      (c) Sanz, R.; Miguel, D.; Martínez, A.; Gohain, M.; García-García, P.; Fernández-Rodríguez, M.; Álvarez, E.; Rodríguez, F. Eur. J. Org. Chem. 2010, 7027.
      (d) Gangadhararao, G.; Uruvakilli, A.; Kumara Swamy, K. C. Org. Lett. 2014, 16, 6060.
      (e) Zhang, X.; Teng, W.; Sally, T.; Wai, P.; Chan, H. J. Org. Chem. 2010, 75, 6290.
      (f) Wang T.; Chen X.; Chen L.; Zhan Z. Org. Lett. 2011, 13, 3324.

    9. [9]

      Barreiro, E.; Vidal, A. S.; Tan, E.; Lau, S.; Sheppard, T. D.; González, S. D. Eur. J. Org. Chem. 2015, 7544.
       

    10. [10]

      Savarimuthu, S. A.; Prakash, D. L.; Thomas, S. A. Tetrahedron Lett. 2014, 55, 3213.  doi: 10.1016/j.tetlet.2014.02.086

    11. [11]

      Yokosaka, T.; Shiga, N.; Nemoto, T.; Hamada, Y. J. Org. Chem. 2014, 79, 3866.  doi: 10.1021/jo500308y

    12. [12]

      Wang, L.; Xie, X.; Liu, Y. Org. Lett. 2012, 23, 5848.
       

    13. [13]

      (a) Shaterian, H. R.; Yarahmadi, H.; Ghashang, M. Tetrahedron 2008, 64, 1263.
      (b) Murugan, K.; Chen, C. Tetrahedron Lett. 2011, 52, 5827.

    14. [14]

      (a) Yadav, J. S.; Reddy, B. V. S.; Reddy, A. S. J. Mol. Catal. A: Chem. 2008, 280, 219.
      (b) Srihari, P.; Reddy, J. S. S.; Bhunia, D. C.; Mandal, S. S.; Yadav, J. S. Synth. Commun. 2008, 38, 1448.
      (c) Srihari, P.; Reddy, J. S. S.; Mandal, S. S.; Satyanarayana, K.; Yadav, J. S. Synthesis 2008, 1853.
      (d) Jang, S.; Kim, A. Y.; Seo, W. S.; Park, K. H. Nanoscale Res. Lett. 2015, 10, 2.

    15. [15]

      Antonino, J. R. C.; Prez, A. L.; Corma, A. Angew. Chem., Int. Ed. 2015, 54, 5658.

    16. [16]

      Yadav, J. S.; Reddy, B. V. S.; Narayanakumar, G. G. K. S.; Rao, K. V. R. Chem. Lett. 2007, 36, 942.  doi: 10.1246/cl.2007.942

    17. [17]

      Gujarathi, S.; Hendrickson, H. P.; Zheng, G. Tetrahedron Lett. 2013, 54, 3550.  doi: 10.1016/j.tetlet.2013.04.120

  • 加载中
    1. [1]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    2. [2]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    3. [3]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    4. [4]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    5. [5]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    6. [6]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    11. [11]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    12. [12]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    16. [16]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    17. [17]

      Haozhe Hu Haoyu Zhang Changsheng Lu . Study on the Precipitation Process of Elemental Sulfur from the Decomposition Products of Thiosulfuric Acid: Is It an Unexpected Failed Experiment?. University Chemistry, 2025, 40(11): 409-415. doi: 10.12461/PKU.DXHX202412034

    18. [18]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    19. [19]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    20. [20]

      Linfeng Zhai Hualin Wang Yu Liu Guanglong Qin . Exploration and Practice on Integrating Ideological and Political Education into the Experiment of the Preparation and Performance Measurement of Polyferric Sulfate. University Chemistry, 2025, 40(9): 354-360. doi: 10.12461/PKU.DXHX202410086

Metrics
  • PDF Downloads(15)
  • Abstract views(1544)
  • HTML views(284)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return