Citation: Li Zhenlong, Jin Jian, Huang Shahua. Recent Advances in Transition Metal-Catalyzed Cross-Coupling Reactions Directly Promoted by Visible Light[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 563-574. doi: 10.6023/cjoc201910031 shu

Recent Advances in Transition Metal-Catalyzed Cross-Coupling Reactions Directly Promoted by Visible Light

  • Corresponding author: Jin Jian, jjin@sioc.ac.cn Huang Shahua, shahua@sit.edu.cn
  • Received Date: 23 October 2019
    Revised Date: 21 November 2019
    Available Online: 11 December 2019

    Fund Project: the Collaborative Innovation Program of Shanghai Institute ofTechnology XTCX2015-16Project supported by the National Natural Science Foundation of China (No. 21402121) and the Collaborative Innovation Program of Shanghai Institute ofTechnology (No. XTCX2015-16)Project supported by the National Natural Science Foundation of China 21402121

Figures(10)

  • Over the last decades, the transition metal-catalyzed cross-coupling reactions have become powerful organic synthetic methods for forming carbon-carbon and carbon-heteroatom bonds. Very recently, the introduction of visible light into transition metal catalysis opened a new avenue for achieving novel, highly enabling cross-coupling reactions that otherwise were elusive. This type of reaction has received extensive attention due to its simple, mild conditions and no need of photocatalyst. Based on the classification of transition metals, the research progress of transition metal-catalyzed cross-coupling reactions directly promoted by visible light is reviewed.
  • 加载中
    1. [1]

      (a) Yi, H.; Zhang, G.; Wang, H. M.; Huang, Z. Y.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016.
      (b) Campeau, L.-C.; Hazari, N. Organometallics 2019, 38, 3.
      (c) Korch, K. M.; Watson, D. A. Chem. Rev. 2019, 119, 8192.

    2. [2]

      (a) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6723.
      (b) Negishi, E.-I. Angew. Chem., Int. Ed. 2011, 50, 6738.
      (c) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.

    3. [3]

    4. [4]

      (a) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
      (b) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.

    5. [5]

      Sagadevan, A.; Hwang, K. C. Adv. Synth. Catal. 2012, 354, 3421.  doi: 10.1002/adsc.201200683

    6. [6]

      Sagadevan, A.; Lyu, P.-C.; Hwang, K. C. Green Chem. 2016, 18, 4526.  doi: 10.1039/C6GC01463A

    7. [7]

      Charpe, V. P.; Hande, A. A.; Sagadevan, A.; Hwang, K. C. Green Chem. 2018, 20, 4859.  doi: 10.1039/C8GC01180J

    8. [8]

      Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012, 338, 647.  doi: 10.1126/science.1226458

    9. [9]

      Hossain, A.; Bhattacharyya, A.; Reiser, O. Science 2019, 364, 450.

    10. [10]

      Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681.  doi: 10.1126/science.aad8313

    11. [11]

      Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2017, 139, 12153.  doi: 10.1021/jacs.7b07546

    12. [12]

      Matier, C. D.; Schwaben, J.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2017, 139, 17707.  doi: 10.1021/jacs.7b09582

    13. [13]

      Ahn, J. M.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2017, 139, 18101.  doi: 10.1021/jacs.7b10907

    14. [14]

      He, J.; Chen, C.; Fu, G. C.; Peters, J. C. ACS Catal. 2018, 8, 11741.  doi: 10.1021/acscatal.8b04094

    15. [15]

      Hazra, A.; Lee, M. T.; Chiu, J. F.; Lalic, G. Angew. Chem., Int. Ed. 2018, 57, 5492.  doi: 10.1002/anie.201801085

    16. [16]

      Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 15505.  doi: 10.1002/anie.201809820

    17. [17]

      Yang, L.; Zhang, J.-Y.; Duan, X.-H.; Gao, P.; Jiao, J.; Guo, L.-N. J. Org. Chem. 2019, 84, 8615.  doi: 10.1021/acs.joc.9b01084

    18. [18]

      Xiong, Y.; Ma, X. D.; Zhang, G. Z. Org. Lett. 2019, 21, 1699.  doi: 10.1021/acs.orglett.9b00252

    19. [19]

      Toth, B. L.; Tischler, O.; Novak, Z. Tetrahedron Lett. 2016, 57, 4505.  doi: 10.1016/j.tetlet.2016.08.081

    20. [20]

      Abdiaj, I.; Fontana, A.; Gomez, M. V.; de la Hoz, A.; Alcázar, J. Angew. Chem., Int. Ed. 2018, 57, 8473.  doi: 10.1002/anie.201802656

    21. [21]

      Abdiaj, I.; Horn, C. R.; Alcázar, J. J. Org. Chem. 2019, 84, 4748.  doi: 10.1021/acs.joc.8b02358

    22. [22]

      Gandolfo, E.; Tang, X. J.; Raha Roy, S.; Melchiorre, P. Angew. Chem., Int. Ed. 2019, 58, 16854.  doi: 10.1002/anie.201910168

    23. [23]

      Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435.  doi: 10.1021/cr9000786

    24. [24]

      Weiss, M. E.; Kreis, L. M.; Lauber, A.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 11125.  doi: 10.1002/anie.201105235

    25. [25]

      Kreis, L. M.; Krautwald, S.; Pfeiffer, N.; Martin, R. E.; Carreira, E. M. Org. Lett. 2013, 15, 1634.  doi: 10.1021/ol400410m

    26. [26]

      Song, J.-Y.; Zhou, X.; Song, H.; Liu, Y.; Zhao, H.-Y.; Sun, Z.-Z.; Chu, W.-Y. ChemCatChem 2018, 10, 758.  doi: 10.1002/cctc.201701253

    27. [27]

      Ravetz, B. D.; Wang, J. Y.; Ruhl, K. E.; Rovis, T. ACS Catal. 2019, 9, 200.  doi: 10.1021/acscatal.8b04326

    28. [28]

      Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170.  doi: 10.1021/cr500425u

    29. [29]

      Wei, X.-J.; Abdiaj, I.; Sambiagio, C.; Li, C. F.; Zysman-Colman, E.; Alcázar, J.; Noë;l, T. Angew. Chem., Int. Ed. 2019, 58, 13030.  doi: 10.1002/anie.201906462

    30. [30]

      Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Chem. Rev. 2018, 118, 2249.  doi: 10.1021/acs.chemrev.7b00443

    31. [31]

      Roslin, S.; Odell, L. R. Chem. Commun. 2017, 53, 6895.  doi: 10.1039/C7CC02763J

    32. [32]

      Kurandina, D.; Parasram, M.; Gevorgyan, V. Angew. Chem., Int. Ed. 2017, 56, 14212.  doi: 10.1002/anie.201706554

    33. [33]

      Wang, G. Z.; Shang, R.; Cheng, W. M.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 18307.  doi: 10.1021/jacs.7b10009

    34. [34]

      Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683.  doi: 10.1002/anie.201704513

    35. [35]

      Kurandina, D.; Rivas, M.; Radzhabov, M.; Gevorgyan, V. Org. Lett. 2018, 20, 357.  doi: 10.1021/acs.orglett.7b03591

    36. [36]

      Wang, G.-Z.; Shang, R.; Fu, Y. Org. Lett. 2018, 20, 888.  doi: 10.1021/acs.orglett.8b00023

    37. [37]

      Wang, G.-Z.; Shang, R.; Fu, Y. Synthesis 2018, 50, 2908.  doi: 10.1055/s-0036-1592000

    38. [38]

      Koy, M.; Sandfort, F.; Tlahuext-Aca, A.; Quach, L.; Daniliuc, C. G.; Glorius, F. Chem.-Eur. J. 2018, 24, 4552.  doi: 10.1002/chem.201800813

    39. [39]

      Jiao, Z. W.; Lim, L. H.; Hirao, H.; Zhou, J. S. Angew. Chem., Int. Ed. 2018, 57, 6294.  doi: 10.1002/anie.201801967

    40. [40]

      Abdiaj, I.; Huck, L.; Mateo, J. M.; de la Hoz, A.; Gomez, M. V.; Díaz-Ortiz, A.; Alcázar, J. Angew. Chem., Int. Ed. 2018, 57, 13231.  doi: 10.1002/anie.201808654

    41. [41]

      Kancherla, R.; Muralirajan, K.; Maity, B.; Zhu, C.; Krach, P. E.; Cavallo, L.; Rueping, M. Angew. Chem., Int. Ed. 2019, 58, 3412.  doi: 10.1002/anie.201811439

    42. [42]

      Thongpaen, J.; Manguin, R.; Dorcet, V.; Vives, T.; Duhayon, C.; Mauduit, M.; Basle, O. Angew. Chem., Int. Ed. 2019, 58, 15244.  doi: 10.1002/anie.201905924

    43. [43]

      Sagadevan, A.; Greaney, M. F. Angew. Chem., Int. Ed. 2019, 58, 9826.  doi: 10.1002/anie.201904288

    44. [44]

      (a) Pflaesterer, D.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 1331.
      (b) Xie, J.; Li, J.; Weingand, V.; Rudolph, M.; Hashmi, A. S. K. Chem.-Eur. J. 2016, 22, 12646.
      (c) Xie, J.; Jin, H. M.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193.
      (d) Harper, M. J.; Arthur, C. J.; Crosby, J.; Emmett, E. J.; Falconer, R. L.; Fensham-Smith, A. J.; Gates, P. J.; Leman, T.; McGrady, J. E.; Bower, J. F.; Russell. C. A. J. Am. Chem. Soc. 2018, 140, 4440.

    45. [45]

      (a) Huang, L.; Rominger, F.; Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2016, 52, 6435.
      (b) Zhang, G. Z.; Peng, Y.; Cui, L.; Zhang, L. M. Angew. Chem., Int. Ed. 2009, 48, 3112.

    46. [46]

      (a) Kim, S.; Rojas-Martin, J.; Toste, F. D. Chem. Sci. 2016, 7, 85.
      (b) Tlahuext-Aca, A.; Hopkinson, M. N.; Sahoo, B.; Glorius, F. Chem. Sci. 2016, 7, 89.

    47. [47]

      Witzel, S.; Xie, J.; Rudolph, M.; Hashmi, A. S. K. Adv. Synth. Catal. 2017, 359, 1522.  doi: 10.1002/adsc.201700121

    48. [48]

      Witzel, S.; Sekine, K.; Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2018, 54, 13802.  doi: 10.1039/C8CC08227H

    49. [49]

      Gu, Q.; Jia, Q. H.; Long, J. L.; Gao, Z. W. ChemCatChem 2019, 11, 669.

    50. [50]

      Xiao, Q.; Sarina, S.; Jaatinen, E.; Jia, J. F.; Arnold, D. P.; Liu, H. W; Zhu, H. Y. Green Chem. 2014, 16, 4272.

    51. [51]

      Xiao, Q.; Sarina, S.; Bo, A.; Jia, J. F.; Arnold, D. P.; Huang, Y. M.; Wu, H. H.; Zhu, H. Y. ACS Catal. 2014, 4, 1725.  doi: 10.1021/cs5000284

    52. [52]

      Sharma, K.; Kumar, M.; Bhalla, V. Chem. Commun. 2015, 51, 12529.  doi: 10.1039/C5CC03907J

    53. [53]

      Zhang, W.-Q.; Li, Q.-Y.; Zhang, Q.; Lu, Y.-.; Lu, H.; Wang, W.-G.; Zhao, X.-S.; Wang, X.-J. Inorg. Chem. 2016, 55, 1005.

    54. [54]

      Sun, D. R.; Li, Z. H. J. Phys. Chem. C 2016, 120, 19744.  doi: 10.1021/acs.jpcc.6b06710

    55. [55]

      Raza, F.; Yim, D. B.; Park, J. H.; Kim, H. I.; Jeon, S. J.; Kim, J. H. J. Am. Chem. Soc. 2017, 139, 14767.  doi: 10.1021/jacs.7b08619

    56. [56]

      Shin, H. H.; Kang, E.; Park, H.; Han, T.; Lee, C. H.; Lim, D. K. J. Mater. Chem. A 2017, 5, 24965.  doi: 10.1039/C7TA08441B

    57. [57]

      Kang, E.; Shin, H. H; Lim, D.-K. Catalysts 2018, 8, 463.

    58. [58]

      Feizpour, F.; Jafarpour, M.; Rezaeifard, A. New J. Chem. 2018, 42, 807.  doi: 10.1039/C7NJ03651E

    59. [59]

      Ge, Y. Q.; Diao, P. H.; Xu, C.; Zhang, N. N.; Guo, C. Chin. Chem. Lett. 2018, 29, 903.  doi: 10.1016/j.cclet.2018.01.002

    60. [60]

      Masing, F.; Nusse, H.; Klingauf, J.; Studer, A. Org. Lett. 2018, 20, 752.  doi: 10.1021/acs.orglett.7b03892

    61. [61]

      Yamamoto, A.; Ohara, T.; Yoshida, H. Catal. Sci. Technol. 2018, 8, 2046.  doi: 10.1039/C7CY02566A

    62. [62]

      Guo, B.; Li, H.-X.; Zha, C.-H.; Young, D. J.; Li, H.-Y.; Lang, J.-P. ChemSusChem 2019, 12, 1421.  doi: 10.1002/cssc.201802918

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    10. [10]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Qun Wang Yang Li Songtao Lu Hongjun Kang Yang Hong Xiaohong Wu . Exploration for the Chemistry Innovative Talent Cultivation from an Interdisciplinary Perspective. University Chemistry, 2024, 39(8): 132-135. doi: 10.3866/PKU.DXHX202401052

    15. [15]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Luhong Chen Yan Zhang . Chem&Bio Interdisciplinary Graduates Training in Nanjing University Promoted by Chemistry and Biomedicine Innovation Center. University Chemistry, 2024, 39(6): 12-16. doi: 10.3866/PKU.DXHX202311089

Metrics
  • PDF Downloads(141)
  • Abstract views(3891)
  • HTML views(1333)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return