Citation: Xu Xinming, Li Jiazhu, Wang Zuli. Recent Advances in Transition Metal-Free Sulfenylation of Indoles[J]. Chinese Journal of Organic Chemistry, ;2020, 40(4): 886-898. doi: 10.6023/cjoc201910020 shu

Recent Advances in Transition Metal-Free Sulfenylation of Indoles

  • Corresponding author: Xu Xinming, Xin_MingXu@163.com
  • Received Date: 16 October 2019
    Revised Date: 28 November 2019
    Available Online: 19 December 2019

    Fund Project: the Young Scholars Research Fund of Yantai University HY19B06Project supported by the Young Scholars Research Fund of Yantai University (No. HY19B06)

Figures(29)

  • Recently, the direct sulfenylation of C——H bond for C——S formation under transition metal-free conditions has rapidly advanced and is employed for eco-friendly synthesis of sulfenylated natural or bioactive compounds with various sulfenylating reagents. In particular, the sulfenylation of indoles is considered to be the most important because it can lead to a new class of molecules displaying a broad spectrum of biological and pharmaceutical activities. The recent five-year progress in direct C——H bond sulfenylation of indoles under transition metal-free conditions is discussed and their mechanisms in detail are described.
  • 加载中
    1. [1]

      (a) Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903.
      (b) Joucla, L.; Djakovitch, L. Adv. Synth. Catal. 2009, 351, 673.
      (c) Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111, 215.

    2. [2]

      (a) Garbe, T. R.; Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. J. Nat. Prod. 2000, 63, 596.
      (b) Bao, B.; Sun, Q.; Yao, X.; Hong, J.; Lee, C. O.; Sim, C. J.; Im, K. S.; Jung, J. H. J. Nat. Prod. 2005, 68, 711.
      (c) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873.
      (d) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875.

    3. [3]

      Ragno, R.; Coluccia, A.; Regina, G. L.; Martino, G. D.; Piscitelli, F.; Lavecchia, A.; Novellino, E.; Bergamini, A.; Ciaprini, C.; Sinistro, A.; Maga, G.; Crespan, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2006, 49, 3172.  doi: 10.1021/jm0512490

    4. [4]

      Regina, G. L.; Edler, M. C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; Martino, G. D.; Matesanz, R.; Díaz, J. F.; Scovassi, A. I.; Prosperi, E.; Lavecchia, A.; Novellino, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2007, 50, 2865.  doi: 10.1021/jm061479u

    5. [5]

      (a) Berger, J. P.; Doebber, T. W.; Leibowitz, M.; Moller, D. E.; Mosley, R. T.; Tolman, R. L.; Ventre, J.; Zhang, B. B.; Zhou, G. WO 0130343, 2001.
      (b) Ramakrishna, V. S. N.; Shirsath, V. S.; Kambhampati, R. S.; Vishwakarma, S.; Kandikere, N. V.; Kota, S.; Jasti, V. WO 2007020653, 2007.

    6. [6]

      Unangst, P. C.; Connor, D. T.; Stabler, S. R.; Weikert, R. J.; Carethers, M. E.; Kennedy, J. A.; Thueson, D. O.; Chestnut, J. C.; Adolphson, R. L.; Conroy, M. C. J. Med. Chem. 1989, 32, 1360.  doi: 10.1021/jm00126a036

    7. [7]

      (a) Lee, C. F.; Liu, Y. C.; Badsara, S. S. Chem. Asian J. 2014, 9, 706.
      (b) Eichman, C. C.; Stambuli, J. P. Molecules 2011, 16, 590.
      (c) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
      (d) Liu, H.; Jiang, X. Chem. Asian J. 2013, 8, 2546.
      (e) Li, G.; Dong, D.; Yu, X.; Wang Z. New J. Chem. 2019, 43, 1667.
      (f) Dong, D.; Chen, W.; Yang, Y.; Gao, X.; Wang, Z. ChemistrySelect 2019, 4, 2480.

    8. [8]

    9. [9]

      Nalbandian, C.; Miller, E.; Toenjes, S.; Gustafson, J. L. Chem. Commun. 2017, 53, 1494.  doi: 10.1039/C6CC09998J

    10. [10]

      Zou, J.-F.; Huang, W.-S.; Li, L.; Xu, Z.; Zheng, Z.-J.; Yang, K.-F.; Xu, L.-W. RSC Adv. 2015, 5, 30389.  doi: 10.1039/C5RA03606B

    11. [11]

      Hostier, T.; Ferey, V.; Ricci, G.; Gomez-Pardo, D.; Cossy, J. Chem. Commun. 2015, 51, 13898.  doi: 10.1039/C5CC05421D

    12. [12]

      (a) Freckleton, M.; Baeza, A.; Benavent, L.; Chinchilla, R. Asian J. Org. Chem. 2018, 7, 1006.
      (b) Dalpozzo, R. Org. Chem. Front. 2017, 4, 2063.
      (c) Liu, Y.-Y.; Zhang, Y.; Hu, C.; Wan, J.; Wen, C. RSC Adv. 2014, 4, 35528.
      (d) Zhou, X.; Li, X. RSC Adv. 2014, 4, 1241.
      (e) Yang, F.; Tian, S. Angew. Chem., Int. Ed. 2013, 52, 4929.
      (f) Katrun, P.; Hongthong, S.; Hlekhlai, S.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Jaipetchb, T.; Kuhakarn, C. RSC Adv. 2014, 4, 18933.
      (g) Rao, H.; Wang, P.; Wang, J.; Li, Z.; Sun, X.; Cao, S. RSC Adv. 2014, 4, 49165.
      (h) Viglianisi, C.; Marcantoni, E.; Carapacchi, V.; Menichetti, S.; Marsil, L. Eur. J. Org. Chem. 2014, 2014, 6405.

    13. [13]

      Zhang, H.; Bao, X.; Song, Y.; Qu, J.; Wang, B. Tetrahenron 2015, 71, 8885.  doi: 10.1016/j.tet.2015.09.070

    14. [14]

      He, Y.-Q.; Liu, S.; Wen, P.; Tian, W.; Ren, X.-Y.; Zhou, Q.; Ma, H.-J.; Huang, G.-S. ChemistrySelect 2016, 1, 1567.  doi: 10.1002/slct.201600257

    15. [15]

      Yi, S.; Li, M.; Mo, W.; Hu, X.; Sun, N.; Jin, L.; Shen, Z. Tetrahedron Lett. 2016, 57, 1912.  doi: 10.1016/j.tetlet.2016.03.073

    16. [16]

      Malik, S.; Equbal, D.; Lavekar, A. G.; Sinha, A. K. Org. Biomol. Chem. 2016, 14, 6111.  doi: 10.1039/C6OB00930A

    17. [17]

      Choudhury, P.; Roy, B.; Basu, B. Asian J. Org. Chem. 2017, 6, 1569.  doi: 10.1002/ajoc.201700275

    18. [18]

      Ohkado, R.; Ishikawa, T.; Iida, H. Green Chem. 2018, 20, 984.  doi: 10.1039/C8GC00117K

    19. [19]

      Fan, W.; Yang, Z.; Jiang, B.; Li, G. Org. Chem. Front. 2017, 4, 1091.  doi: 10.1039/C6QO00851H

    20. [20]

      Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371.  doi: 10.1002/ajoc.201700677

    21. [21]

      Kong, D.; Huang, T.; Liang, M.; Wu, M.; Lin, Q. Org. Biomol. Chem. 2019, 17, 830.  doi: 10.1039/C8OB02800A

    22. [22]

      Guo, W.; Tan, W.; Zhao, M.; Tao, K.; Zheng, L.-Y.; Wu, Y.; Chen, D.; X.-L. RSC Adv. 2017, 7, 37739.  doi: 10.1039/C7RA08086G

    23. [23]

      Chen, M.; Luo, Y.; Zhang, C.; Guo, L.; Wang, Q.; Wu, Y. Org. Chem. Front. 2019, 6, 116.  doi: 10.1039/C8QO00726H

    24. [24]

      (a) Chen, S.-Q.; Wang, Q.-M.; Xu, P.-C.; Ge, S.-P.; Zhong, P.; Zhang, X.-H. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 100.
      (b) Rahaman, R.; Devi, N.; Barman, P. Tetrahedron Lett. 2015, 56, 4224.
      (c) Devi, N.; Rahaman, R.; Sarma, K.; Khan, T.; Barman, P. Eur. J. Org. Chem. 2017, 2017, 1520.
      (d) Rafique, J.; Saba, S.; Rosrio, A. R.; Braga, A. L. Chem.-Eur. J. 2016, 22, 11854.
      (e) Bettanin, L.; Saba, S.; Doerner, C. V.; Franco, M. S.; Godoi, M.; Rafique, J.; Braga, A. L. Tetrahedron 2018, 74, 3971.

    25. [25]

      Thurow, S.; Penteado, F.; Perin, G.; Alves, D.; Santi, C.; Monti, B.; Schiesser, C. H.; Lenardao, E. J. Org. Chem. Front. 2018, 5, 1983.  doi: 10.1039/C8QO00360B

    26. [26]

      Ye, L.-M.; Chen, J.; Mao, P.; Zhang, X.-J.; Yan, M. Tetrahedron Lett. 2017, 58, 2743.  doi: 10.1016/j.tetlet.2017.05.090

    27. [27]

      Yu, Y.; Zhou, Y.; Song, Z.-Q.; Liang, G. Org. Biomol. Chem. 2018, 16, 4958.  doi: 10.1039/C8OB00948A

    28. [28]

      Liu, C.; Ding, L. Org. Biomol. Chem. 2015, 13, 2251.  doi: 10.1039/C4OB02575J

    29. [29]

      Rahaman, R.; Devi, N.; Bhagawati, J. R.; Barman, P. RSC Adv. 2016, 6, 18929.  doi: 10.1039/C5RA26425A

    30. [30]

      Al-Saedy, M. A. E.; Joseph, A.-C. M. A. N.; Harrity, P. A. Synlett 2017, 28, 349.

    31. [31]

      Liu, C.; Fan, J.; Wu, M.; Chen, J.-H.; Zhao, Y.; Xie, M.-H. Chin. J. Chem. 2018, 36, 819.  doi: 10.1002/cjoc.201800164

    32. [32]

      Zhao, X.; Wei, A.; Yang, B.; Li, T.-J.; Li, Q.; Qiu, D.; Lu, K. J. Org. Chem. 2017, 82, 9175.  doi: 10.1021/acs.joc.7b01226

    33. [33]

      Zhao, X.; Zheng, X.; Tian, M.-M.; Sheng, J.; Tong, Y.-F.; Lu, K. Tetrahedron 2017, 73, 7233.  doi: 10.1016/j.tet.2017.11.019

    34. [34]

      Yang, X.; Bao, Y.; Dai, Z.; Zhou, Q.; Yang, F. Green Chem. 2018, 20, 3727.  doi: 10.1039/C8GC01764F

    35. [35]

      Siauciulis, M.; Sapmaz, S.; Pulis, A. P.; Procter, D. J. Chem. Sci. 2018, 9, 754.  doi: 10.1039/C7SC04723A

    36. [36]

      (a) Gullapalli, K.; Ragam, R.; Narayanarao, V. RSC Adv. 2015, 5, 22718.
      (b) Lu, K.; Deng, Z.; Li, M.; Li, T.; Zhao, X. Org. Biomol. Chem. 2017, 15, 1254.
      (c) Zhao, X.; Wei, A.; Li, T.; Su, Z.; Chen, J.; Lu, K. Org. Chem. Front. 2017, 4, 232.

    37. [37]

      He, Y.; Jiang, J.; Bao, W.; Deng, W.; Xiang, J. Tetrahedron Lett. 2017, 58, 4583.  doi: 10.1016/j.tetlet.2017.10.040

    38. [38]

      Equbal, D.; Saima, R. S.; Lavekar, A. G.; Sinha, A. K. J. Org. Chem. 2019, 84, 2660.  doi: 10.1021/acs.joc.8b03097

    39. [39]

      Ghosh, A.; Lecomte, M.; Kim-Lee, S.-H.; Radosevich, A. T. Angew. Chem., Int. Ed. 2019, 58, 2864.  doi: 10.1002/anie.201813919

    40. [40]

      Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560.  doi: 10.1002/anie.200604943

    41. [41]

      Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.; Zha, Z.; Wang, Z. Green Chem. 2016, 18, 2609.  doi: 10.1039/C6GC00313C

    42. [42]

      Rahaman, R.; Devi, N.; Sarma, K.; Barman, P. RSC Adv. 2016, 6, 10873.  doi: 10.1039/C5RA24851E

    43. [43]

      (a) Ge, W.; Wei, Y. Green Chem. 2012, 14, 2066.
      (b) Azeredo, J. B.; Godoi, M.; Martins, G. M.; Silveira, C. C.; Braga, A. L. J. Org. Chem. 2014, 79, 4125.
      (c) Xiao, F. H.; Xie, H.; Liu, S. W.; Deng, G. J. Adv. Synth. Catal. 2014, 356, 364.

    44. [44]

      Qi, H.; Zhang, T.; Wan, K.-F.; Luo, M.-M. J. Org. Chem. 2016, 81, 4262.  doi: 10.1021/acs.joc.6b00636

    45. [45]

      Li, J.; Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Org. Biomol. Chem. 2016, 14, 9384.  doi: 10.1039/C6OB01528J

    46. [46]

      Rahaman, R.; Barman, P. Eur. J. Org. Chem. 2017, 2017, 6327.  doi: 10.1002/ejoc.201701293

  • 加载中
    1. [1]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    9. [9]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    12. [12]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    16. [16]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

Metrics
  • PDF Downloads(23)
  • Abstract views(1974)
  • HTML views(409)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return