Citation: Ding Bangdong, Jiang Yechao, Zhang Yu, Ye Rong, Sun Jin, Yan Chaoguo. Synthesis of Indanone-Containing Heterocycles via Cycloaddition Reaction of Quinolinium Ylides with 1, 3-Indanedione and 2-Arylidene-1, 3-indanediones[J]. Chinese Journal of Organic Chemistry, ;2020, 40(4): 1003-1016. doi: 10.6023/cjoc201910016 shu

Synthesis of Indanone-Containing Heterocycles via Cycloaddition Reaction of Quinolinium Ylides with 1, 3-Indanedione and 2-Arylidene-1, 3-indanediones

  • Corresponding author: Yan Chaoguo, cgyan@yzu.edu.cn
  • Received Date: 12 October 2019
    Revised Date: 13 November 2019
    Available Online: 2 December 2019

    Fund Project: the National Natural Science Foundation of China 21572196Project supported by the National Natural Science Foundation of China (No. 21572196) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Figures(7)

  • The triethylamine promoted cycloaddition reaction of N-phenacylquinolinium bromide with 1, 3-indanedione gave functionalized dihydropyrrolo[1, 2-a]quinolines as main products and 2-(1-(2-oxo-2-phenylethyl)-quinolin-4-ylidene)-indene-1, 3-diones as minor products. The similar reaction with N-benzylquinolinium bromide gave 2-(1-(2-oxo-2-phenylethyl)-quino-lin-4-ylidene)-indene-1, 3-diones as major products. On the other hand, triethylamine promoted three-component reaction of N-phenacyl, N-ethoxycarbonylmethyl and N-(4-nitrobenzyl)quinolinium salts, aromatic aldehydes and 1, 3-indanedione in ethanol at room temperature afforded functionalized spiro[indene-2, 3'-pyrrolo[1, 2-a]quinolone]s in good yields and with high diastereoselectivity.
  • 加载中
    1. [1]

      (a) Addla, D.; Bhima; Sridhar, B.; Devi, A.; Kantevari, S. Bioorg. Med. Chem. Lett. 2012, 22, 7475.
      (b) Chakrabarty, S.; Croft, M. S.; Marko, M. G.; Moyna, G. Bioorg. Med. Chem. 2013, 21, 1143/
      (c) Muscia, G. C.; Buldain, G. Y.; Asis, S. E. Eur. J. Med. Chem. 2014, 73, 243.

    2. [2]

      (a) Huang, H.-H.; Prabhakar, Ch.; Tang, K.-C.; Chou, P. T.; Huang, G. J.; Yang, J. S. J. Am. Chem. Soc. 2011, 133, 8028.
      (b) Gomez-Esteban, S.; Benito-Hernandez, A.; Termine, R.; Hennrich, G.; Navarrete, J. T. L.; Ruiz Delgado, M. C.; Golemme, A.; Gomez-Lor, B. Chem.-Eur. J. 2018, 24, 3576.
      (c) Sanguinet, L.; Williams, J. C.; Yang, Z. Y.; Twieg, R. J.; Mao, G. L.; Singer, K. D.; Wiggers, G.; Petschek, R. G. Chem. Mater. 2006, 18, 425.

    3. [3]

      (a) Mondal, A.; Mukhopadhyay, C. ACS Comb. Sci. 2015, 17, 404.
      (b) Mondal, A.; Banerjee, B.; Bhaumik, A.; Mukhopadhyay, C. ChemCatChem 2016, 8, 1185.
      (c) Xu, H.; Chen, K.; Liu, H. W.; Wang, G. W. Org. Chem. Front. 2018, 5, 2864.
      (d) Hussein, E. M.; Moussa, Z.; Ahmed, S. A. Monatsh. Chem. 2018, 149, 2021.

    4. [4]

      (a) Zhou, Y. J.; Chen, D. S.; Li, Y. L.; Liu, Y.; Wang, X. S. ACS Comb. Sci. 2013, 15, 498.
      (b) Chen, M.; Sun, N.; Liu, Y. H. Org. Lett. 2013, 15, 5574.
      (c) Allais, C.; Lieby-Muller, F.; Rodriguez, J.; Constantieux, T. Eur. J. Org. Chem. 2013, 4131.
      (d) Marquise, N.; Dorcet, V.; Chevallier, F.; Mongin, F. Org. Biomol. Chem. 2014, 12, 8138.

    5. [5]

      (a) Mei, G. J.; Shi, F.; Chem. Commun. 2018, 54, 6607.
      (b) Mei, G. J.; Li, D.; Zhou, G. X.; Shi, F.; Cao, Z. Chem. Commun. 2017, 53, 10030.
      (c) Wu, J. L.; Du, B. X.; Zhang, Y. C.; He, Y. Y.; Wang, J. Y.; Wu, P.; Shi, F. Adv. Synth. Catal. 2016, 358, 2777.
      (d) Zhu, Q. N.; Zhang, Y. C.; Xu, M. M.; Sun, X. X.; Yang, X.; Shi, F. J. Org. Chem. 2016, 81, 7898.
      (e) Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2016, 55, 12104.
      (f) Abbaraju, S.; Ramireddy, N.; Rana, N. K.; Arman, H. J.; Zhao, C. G. Adv. Synth. Catal. 2015, 357, 2633.

    6. [6]

      (a) Abdukader, A.; Zhang, Y. H.; Zhang, Z. P.; Liu, C. J. Chin. J. Org. Chem. 2016, 36, 875 (in Chinese).
      (阿布力米提·阿布都卡德尔, 张永红, 张增鹏, 刘晨江, 有机化学, 2016, 36, 875.)
      (b) Tian, W. Y.; Xu, S.; Liang, Z. W.; Sun, D. L.; Zhang, R. H. Chin. J. Org. Chem. 2016, 36, 2121 (in Chinese).
      (田文艳, 徐松, 梁中卫, 孙德立, 张荣华, 有机化学, 2016, 36, 2121.)
      (c) Hao, E. J.; Jiang, X. H.; Fu, D. D.; Wang, D. C.; Xie, M. S.; Qu, G. R.; Guo, H. M. Chin. J. Org. Chem. 2016, 36, 2746 (in Chinese).
      (郝二军, 蒋小涵, 付丹丹, 王东超, 谢明胜, 渠桂荣, 郭海明, 有机化学, 2016, 36, 2746.)
      (d) Tian, K.; Meng, J.; Gan, Y. Y.; Li, X. Q.; Wu, S. Q.; Chen, J.; Li, W.; Qi, Y. Y.; Hu, W. N.; Wang, Z. C.; Ouyang G. P. Chin. J. Org. Chem. 2018, 38, 2657 (in Chinese).
      (田坤, 孟娇, 甘宜远, 李小琴, 巫受群, 陈洁, 李文, 漆亚云, 胡伟男, 王贞超, 欧阳贵平, 有机化学, 2018, 38, 2657.)

    7. [7]

      (a) Tugrak, M.; Inci Gul, H.; Sakagami, H.; Gulcin, I.; Supuran, C. T. Bioorg. Chem. 2018, 81, 433.
      (b) Jangra, H.; Chen, Q.; Fuks, E.; Zenz, I.; Mayer, P.; Ofial, A. R.; Zipse, H.; Mayr, H. J. Am. Chem. Soc. 2018, 140, 16758.
      (c) Chen, Y. R.; Ganapuram, M. R.; Hsieh, K. H.; Chen, K. H.; Karanam, P.; Vagh, S. S.; Liou, Y. C.; Lin, W. W. Chem. Commun. 2018, 54, 12702.
      (d) Xu, H.; Sha, F.; Li, Q.; Wu, X. Y. Org. Biomol. Chem. 2018, 16, 7214.

    8. [8]

      (a) Wang, X. H.; Yan, C.-G. Synthesis 2014, 46, 1059.
      (b) Shi, Y. G.; Wang, X. H.; Liu, R. Z.; C. G. Yan, Chem. Commun. 2016, 52, 6280.
      (c) Zhang, Y. Y.; Han, Y.; Sun, J.; Yan, C. G. ChemistrySelect 2017, 2, 7382.
      (d) Cao, J.; Sun, J. Yan, C. G. Org. Biomol. Chem. 2018, 16, 4170.
      (e) Sun, J.; Zhang, Y.; Shi, R. G.; Yan, C. G. Org. Biomol. Chem. 2019, 17, 3978.
      (f) Liu, D.; Sun, J.; Zhang, Y.; Yan, C. G. Org. Biomol. Chem. 2019, 17, 8008.
      (g) Yang, W. J.; Fang, H. L.; Sun, J. Yan, C. G. ACS Omega 2019, 4, 13553.
      (h) Huang, Y.; Fang, H. L.; Huang, Y. X.; Sun, J.; Yan, C. G. J. Org. Chem. 2019, 84, 1912437.

    9. [9]

      (a) Kröhnke, F.; Zecher, W. Angew. Chem., Int. Ed. 1962, 1, 626.
      (b) Kröhnke, F. Angew. Chem., Int. Ed. 1963, 2, 225.
      (c) Jacobs, J.; Van Hende, E.; Claessens, S.; De Kimpe, N. Curr. Org. Chem. 2011, 15, 1340.
      (d) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Chem. Rev. 2012, 112, 2642.

    10. [10]

      (a) Constable, E. C.; Edwards, A. J.; Martínez-Máńez, R.; Raithby, P. R. J. Chem. Soc., Dalton Trans. 1995, 3253.
      (b) Eryazici, I.; Moorefield, C. N.; Durmus, S.; Newkone, G. R. J. Org. Chem. 2006, 71, 1009.
      (c) Tu, S. J.; Jia, R. H.; Jiang, B.; Zhang, J. Y.; Zhang, Y.; Yao, C. S.; Ji, S. J. Tetrahedron 2007, 63, 381.

    11. [11]

      (a) Bora, U.; Saikia, A.; Boruah, R. C. Org. Lett. 2003, 5, 435.
      (b) Sasaki, T.; Kanematsu, K.; Yukimoto, Y.; Ochiai, S. J. Org. Chem. 1971, 36, 813.
      (c) Xia, Z. Q.; Przewloka, T.; Koya, K.; Ono, M.; Chen, S. J.; Sun, L. J. Tetrahedron Lett. 2006, 47, 8817.

    12. [12]

      (a) Dinica, R. M.; Druta, I. I.; Pettinari, C. Synlett 2000, 1013.
      (b) Furdui, B.; Dinica, R.; Druta, I. I.; Demeunynck, M. Synthesis 2006, 2640.

    13. [13]

      (a) Zhang, X. C.; Huang, W. Y. Synthesis 1999, 1, 51.
      (b) Wu, K.; Chen, Q. Y. Synthesis 2003, 35.
      (c) Chuang, C. P.; Tsai, A. I. Synthesis 2006, 675.

    14. [14]

      (a) Ruano, J. L. G.; Fraile, A.; Martín, M. R.; González, G.; Fajardo, C.; Martín-Castro, A. M. J. Org. Chem. 2011, 76, 3296.
      (b) Khlebnikov, A. F.; Golovkina, M. V.; Novikov, M. S.; Yufit, D. S. Org. Lett. 2012, 14, 3768.
      (c) Brioche, J.; Meyer, C.; Cossy, J. Org. Lett. 2015, 17, 2800.

    15. [15]

      (a) Liu, Y.; Sun, J. W. J. Org. Chem. 2012, 77, 1191.
      (b) Osyanin, V. A.; Osipov, D. V.; Klimochkin, Y. N. J. Org. Chem. 2013, 78, 5505.
      (c) Wang, F. Y.; Shen, Y. M.; Hu, H. Y.; Wang, X. S.; Wu, H.; Liu, Y. J. Org. Chem. 2014, 79, 9556.

    16. [16]

      (a) Allgäuer, D. S.; Mayer, P.; Mayr, H. J. Am. Chem. Soc. 2013, 135, 15216.
      (b) Allgäuer, D. S.; Mayr, H. Eur. J. Org. Chem. 2013, 6379.
      (c) Allgäuer, D. S.; Mayr, H. Eur. J. Org. Chem. 2014, 2956.
      (d) Hopf, H.; Jones, P. G.; Nicolescu, A.; Bicu, E.; Birsa, L. M.; Belei, D. Chem.-Eur. J. 2014, 20, 5565.

    17. [17]

      (a) Yan, C. G.; Cai, X. M.; Wang, Q. F.; Wang, T. Y.; Zheng, M. Org. Biomol. Chem. 2007, 5, 945.
      (b) Yan, C. G.; Song, X. K.; Wang, Q. F.; Sun, J. Siemeling, U.; Bruhn, C. Chem. Commun. 2008, 1440.
      (c) Wang, Q. F.; Song, X. K.; Chen, J.; Yan, C. G. J. Comb. Chem. 2009, 11, 1007.
      (d) Wang, Q. F.; Hou, H.; Hui, L.; Yan, C. G. J. Org. Chem. 2009, 74, 7403.
      (e) Yan, C. G.; Wang, Q. F.; Song, X. K.; Sun, J. J. Org. Chem. 2009, 74, 710.
      (f) Wang, Q. F.; Hui, L.; Hou, H.; Yan, C. G. J. Comb. Chem. 2010, 12, 260.
      (g) Han, Y.; Chen, J.; Hui, L.; Yan, C. G. Tetrahedron 2010, 66, 7743.

    18. [18]

      (a) Hou, H.; Zhang, Y.; Yan, C. G. Chem. Commun. 2012, 48, 4492.
      (b) Hui, L.; Li, H. Y.; Yan, C. G. Eur. J. Org. Chem. 2012, 3157.
      (c) Wu, L.; Sun, J.; Yan. C. G. Org. Biomol. Chem. 2012, 10, 9452.
      (d) Shen, G. L.; Sun, J.; Yan, C. G. Org. Biomol. Chem., 2015, 13, 10929.
      (e) Shen, G. L.; Sun, J.; Yan, C. G. RSC Adv. 2015, 5, 4475.
      (f) Liu, L. Z.; Wang, X. Y.; Sun, J.; Yan, C. G. Tetrahedron Lett. 2015, 56, 6711.

    19. [19]

      (a) Banothu, J.; Basavoju, S.; Bavantula, R. J. Heterocycl. Chem. 2015, 52, 853.
      (b) Majumder, S.; Sharma, M.; Bhuyan, P. J. Tetrahedron Lett. 2013, 54, 6868.

    20. [20]

      (a) Shen, G. L.; Sun, J.; Yan, C. G. Chin. J. Chem. 2016, 34, 412.
      (b) Liu, R. Z.; Shi, R. G.; Sun, J.; Yan, C. G. Org. Chem. Front. 2017, 4, 354.
      (c) Shi, R. G.; Sun, J.; Yan, C. G. ACS Omega 2017, 2, 7820.

    21. [21]

      (a) Fujita, R.; Hoshino, M.; Tojyo, Y.; Kimura, A.; Hongo, H. Yakugaku Zasshi 2006, 126, 99.
      (b) Fujita, R.; Watanabe, N.; Tomisawa, H. Heterocycles 2001, 55, 435.
      (c) Fujita, R.; Hoshino, M.; Tomisawa, H. Chem. Pharm. Bull. 2006, 54, 334.

  • 加载中
    1. [1]

      Feng-Fan YangYin-Kang DingLin-Kai WuJiayue TianShuai DouWenjing WangLinfeng Liang . A 1,3,5-triazine μ3-bridged neutral Cu(Ⅰ) framework with enhanced stability and CO2 capture selectivity. Chinese Chemical Letters, 2025, 36(12): 110550-. doi: 10.1016/j.cclet.2024.110550

    2. [2]

      Qiong-Hui PengNing-Bo LiJia-Cheng HouCai-Jun HeYa-Xin YangChun-Lin ZhuangLi-Juan OuMei YuanWei-Min He . Nd@g-C3N4 dual-functional photosynthesis and antitumor activities of 3-fluoroalkylated quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2025, 36(12): 111402-. doi: 10.1016/j.cclet.2025.111402

    3. [3]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    4. [4]

      Aonan WangJingwen DaiYiming GuoFanghua NingXiaoyu LiuSidra SubhanJiaqian QinShigang LuJin Yi . Imidazolium bromide based dual-functional redox mediator for the construction of dendrite-free Li-CO2 batteries. Chinese Chemical Letters, 2025, 36(7): 110186-. doi: 10.1016/j.cclet.2024.110186

    5. [5]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    6. [6]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    7. [7]

      Lixing LUShaoxian LIUJian XUZiqi JINJiongjia CHENGJiyang ZHAOFubo WANGHaiying WANG . [FeFe]-hydrogenase-containing compound and its photocatalytic H2-production performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2584-2590. doi: 10.11862/CJIC.20250200

    8. [8]

      Gen ZhangYing GuLin LiFuli MaDan YueXiaoguang ZhouChungui Tian . Anion-modulated HER and OER activity of 1D Co-Mo based interstitial compound heterojunctions for the effective overall water splitting. Chinese Chemical Letters, 2025, 36(7): 110110-. doi: 10.1016/j.cclet.2024.110110

    9. [9]

      Yi-Chang Yang Rui-Xi Wang Li-Ming Wu Ling Chen . Regulating the coplanarity of π-conjugated units through hydrogen bonding in FAHC2O4 and FAH2C3N3S3 crystals. Chinese Journal of Structural Chemistry, 2025, 44(10): 100714-100714. doi: 10.1016/j.cjsc.2025.100714

    10. [10]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    11. [11]

      Jiang GongFengling ZhengHanqing ZhangWeihan ShuHao WangNi ZhangPengbing HuangChuancai ZhangBin Dai . The interfacial effect of SiO2-Ni3Mo3N efficiently catalyzes the low-temperature hydrogenation of dimethyl oxalate to ethanol. Chinese Chemical Letters, 2025, 36(8): 111122-. doi: 10.1016/j.cclet.2025.111122

    12. [12]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    13. [13]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    14. [14]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    15. [15]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    16. [16]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    17. [17]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    18. [18]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    20. [20]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

Metrics
  • PDF Downloads(18)
  • Abstract views(1910)
  • HTML views(274)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return