Citation: Tang Liang, Li Xuewei, Xie Fang, Zhang Wanbin. Catalytic Kinetic Resolution of Amines and Their Derivatives by Non-acylation Reaction[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 575-588. doi: 10.6023/cjoc201910010 shu

Catalytic Kinetic Resolution of Amines and Their Derivatives by Non-acylation Reaction

  • Corresponding author: Xie Fang, xiefang@sjtu.edu.cn
  • Received Date: 10 October 2019
    Revised Date: 11 November 2019
    Available Online: 21 November 2019

    Fund Project: the National Natural Science Foundation of Chin 21572129Project supported by the National Natural Science Foundation of China (No. 21572129)

Figures(35)

  • Enantiopure amines are important building blocks with a plethora of applications in the fields of medicine, agriculture and materials. Kinetic resolution (KR) of racemic amines is one of the most important methods for obtaining enantiopure amines. However, KR of amines is little investigated because of their high reactivity and coordinating ability in the corresponding KR of alcohols. Till now, major developments using non-enzymatic catalysts for KR of amines have been extensively achieved by catalytic acylation (or deacylation). Only recently the non-acylation KR of amines is improving. The relatively wide range of different catalytic asymmetric reactions have been employed as strategies for the efficient KR of amines. For some cases, the asymmetric reactions do not involve with nitrogen atoms of racemic substrates. This review aims to introduce the development of the non-acylation KR of amines for the synthesis of enantiopure amines.
  • 加载中
    1. [1]

      Yoshimura, H.; Oguri, K.; Tsukamoto, H. Tetrahedron Lett. 1968, 9, 483.  doi: 10.1016/S0040-4039(01)98789-1

    2. [2]

      Lautens, M.; Rovis, T. J. Org. Chem. 1997, 62, 5246.  doi: 10.1021/jo971115x

    3. [3]

      Jeffery, J. E.; Kerrigan, F.; Miller, T. K.; Smith, G. J.; Tometzki, G. B. J. Chem. Soc., Perkin Trans. 1996, 2583.

    4. [4]

      Stoner, E. J.; Cooper, A. J.; Diclcman, D. A.; Kolaczkowslti, L.; Lallaman, J. E.; Liu, J. H.; Oliver-Shaffer, P A.; Patel, K. M.; Paterson, J. B.; Plata, D. J.; Riley, D. A.; Sham, H. L.; Stengel, P J.; Tien, J. H. Org. Proc. Res. Dev. 2000, 4, 264.  doi: 10.1021/op990202j

    5. [5]

      France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Chem. Rev. 2003, 103, 2985.  doi: 10.1021/cr020061a

    6. [6]

      (a) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974.
      (b) Kagan, H. B.; Fiaud, J.-C. Top. Stereochem. 1988, 18, 249.

    7. [7]

      Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5.  doi: 10.1002/1615-4169(20010129)343:1<5::AID-ADSC5>3.0.CO;2-I

    8. [8]

      (a) Arai, S.; Bellemin-Laponnaz, S.; Fu, G. C. Angew. Chem., Int. Ed. 2001, 40, 234.
      (b) De, C. K.; Klauber, E. G.; Seidel, D. J. Am. Chem. Soc. 2009, 131, 17060.
      (c) Klauber, E. G.; De, C. K.; Shah, T. K.; Seidel, D. J. Am. Chem. Soc. 2010, 132, 13624.
      (d) Mittal, N.; Lippert, K. M.; De, C. K.; Klauber, E. G.; Emge, T. J.; Schreiner, P. R.; Seidel, D. J. Am. Chem. Soc. 2015, 137, 5748.
      (e) Birman, V. B.; Jiang, H.; Li, X.; Guo, L.; Uffman, E. W. J. Am. Chem. Soc. 2006, 128, 6536.
      (f) Yang, X.; Bumbu, V. D.; Liu, P.; Li, X.; Jiang, H.; Uffman, E. W.; Guo, L.; Zhang, W.; Jiang, X.; Houk, K. N.; Birman, V. B. J. Am. Chem. Soc. 2012, 134, 17605.
      (g) Arseniyadis, S.; Valleix, A.; Wagner, A.; Mioskowski, C. Angew. Chem., Int. Ed. 2004, 43, 3314.
      (h) Arseniyadis, S.; Subhash, P. V.; Valleix, A.; Mathew, S. P.; Blackmond, D. G.; Wagner, A.; Mioskowski, C. J. Am. Chem. Soc. 2005, 127, 6138.

    9. [9]

      (a) Birman, V. B.; Jiang, H.; Li, X.; Guo, L.; Uffman, E. W. J. Am. Chem. Soc. 2006, 128, 6536.
      (b) Yang, X.; Bumbu, V. D.; Liu, P.; Li, X.; Jiang, H.; Uffman, E. W.; Guo, L.; Zhang, W.; Jiang, X.; Houk, K. N.; Birman, V. B. J. Am. Chem. Soc. 2012, 134, 17605.
      (c) Fowler, B. S.; Mikochik, P. J.; Miller, S. J. J. Am. Chem. Soc. 2010, 132, 2870.
      (d) Bumbu, V. D.; Yang, X.; Birman, V. B. J. Am. Chem. Soc. 2011, 133, 13902.
      (e) Bumbu, V. D.; Yang, X.; Birman, V. B. Org. Lett., 2013, 15, 279.

    10. [10]

      For representative reports on OKR, see: (a) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001, 123, 7725.
      (b) Muller, J. A.; Sigman, M. S. J. Am. Chem. Soc. 2003, 125, 7005.
      (c) Nishibayashi, Y.; Yamauchi, A.; Onodera, G.; Uemura, S. J. Org. Chem. 2003, 68, 5875.
      (d) Radosevich, A. T.; Musich, C.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 1090.
      (e) Pawar, V. D.; Bettigeri, S.; Weng, S.-S.; Kao, J.-Q.; Chen, C.-T. J. Am. Chem. Soc. 2006, 128, 6308.
      (f) Chen, T.; Jiang, J.-J.; Xu, Q.; Shi, M. Org. Lett. 2007, 9, 865.
      (g) Arita, S.; Koike, T.; Kayaki, Y.; Ikariya, T. Angew. Chem., Int. Ed. 2008, 49, 2447.
      (h) Tomizawa, M.; Shibuya, M.; Iwabuchi, Y. Org. Lett. 2009, 11, 1829.
      (i) Kunisu, T.; Oguma, T.; Katsuki, T. J. Am. Chem. Soc. 2011, 133, 12937.

    11. [11]

      (a) Miyano, S.; Lu, L. D.-L.; Viti, S. M.; Sharpless, K. B. J. Org. Chem. 1983, 48, 3608.
      (b) Miyano, S.; Lu, L. D.-L.; Viti, S. M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 4350.
      (c) Hayashi, M.; Okamura, M.; Toba, T.; Oguni, N.; Sharpless, K. B. Chem. Lett. 1990, 547.

    12. [12]

      Bhadra, S.; Yamamoto, H. Angew. Chem., Int. Ed. 2016, 55, 13043.  doi: 10.1002/anie.201606354

    13. [13]

      Saito, K.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2013, 135, 11740.  doi: 10.1021/ja406004q

    14. [14]

      (a) Tsutsui, H.; Narasaka, K. Chem. Lett. 1999, 28, 45.
      (b) Tsutsui, H.; Kitamura, M.; Narasaka, K. Bull. Chem. Soc. Jpn. 2002, 75, 1451.

    15. [15]

      Saito, K.; Akiyama, T. Angew. Chem., Int. Ed. 2016, 55, 3148.  doi: 10.1002/anie.201510692

    16. [16]

      Lu, R.; Cao, L.; Guan, H.; Liu, L. J. Am. Chem. Soc. 2019, 141, 6318.  doi: 10.1021/jacs.9b00615

    17. [17]

      (a) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599.
      (b) Fruit, C.; Müller, P. Chem. Rev. 2003, 103, 2905.

    18. [18]

      Cockrell, J.; Wilhelmsen, C.; Rubin, H.; Martin, A.; Morgan, J. B. Angew. Chem., Int. Ed. 2012, 51, 9842.  doi: 10.1002/anie.201204224

    19. [19]

      Ohmatsu, K.; Hamajima, Y.; Ooi, T. J. Am. Chem. Soc. 2012, 134, 8794.  doi: 10.1021/ja3028668

    20. [20]

      Ohmatsu, K.; Ando, Y.; Ooi, T. J. Am. Chem. Soc. 2013, 135, 18706.  doi: 10.1021/ja411647x

    21. [21]

      Monaco, M.R.; Poladura, B.; De Los Bernardos, M. D.; Leutzsch, M.; Goddard, R.; List, B. Angew. Chem., Int. Ed. 2014, 53, 7063.  doi: 10.1002/anie.201400169

    22. [22]

      Zhu, Y. M.; Yang, P. J.; Wang, S.; Liu, Z.; Yang, G.; Chai, Z. J. Am. Chem. Soc. 2015, 137, 10088.  doi: 10.1021/jacs.5b05820

    23. [23]

      Yang, P. J., Zhang, H.; Wang, S.; Yang, G.; Chai, Z. Angew. Chem., Int. Ed. 2017, 56, 650.  doi: 10.1002/anie.201610693

    24. [24]

      Zhang, F.; Zhang, Y.; Tan, Q.; Lin, L.; Liu, X.; Feng, X. Org. Lett. 2019, 21, 5928.  doi: 10.1021/acs.orglett.9b02058

    25. [25]

      Chen, X.; Vedejs, W. J. Am. Chem. Soc. 1997, 119, 2584.  doi: 10.1021/ja963666v

    26. [26]

      Wu, B.; Parquette, J. R.; RajanBabu, T. V. Science 2009, 326, 1662.  doi: 10.1126/science.1180739

    27. [27]

      Wu, B.; Gallucci, J. C.; Parquette, J. R.; RajanBabu, T. V. Chem. Sci. 2014, 5, 1102.  doi: 10.1039/C3SC52929K

    28. [28]

      Xu, Y.; Kaneko, K.; Kanai, M.; Shibasaki, M.; Matsunaga, S. J. Am. Chem. Soc. 2014, 136, 9190.  doi: 10.1021/ja5039165

    29. [29]

      Hu, H.; Liu, Y.; Lin, L.; Zhang, Y.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2016, 55, 10098.

    30. [30]

      An, D.; Guan, X.; Guan, R.; Jin, L.; Zhang, G.; Zhang, S. Chem. Commun. 2016, 52, 11211.  doi: 10.1039/C6CC06388H

    31. [31]

      Zheng, B. H.; Hou, X.-L. Org. Lett. 2009, 11, 1789.  doi: 10.1021/ol9002543

    32. [32]

      Wang, Y., Xu, Y.-N.; Fang, G.-S.; Kang, H.-J.; Gu, Y.; Tian, S.-K. Org. Biomol. Chem. 2015, 13, 5367.  doi: 10.1039/C5OB00671F

    33. [33]

      Li, M.-B.; Li, H.; Wang, J.; Liu, C.-R.; Tian, S.-K. Chem. Commun. 2013, 49, 8190.  doi: 10.1039/c3cc44914a

    34. [34]

      Liu, C.-R.; Li, M.-B.; Yang, C.-F.; Tian, S.-K. Chem.-Eur. J. 2009, 15, 793.  doi: 10.1002/chem.200801665

    35. [35]

      Wu, X.-S.; Tian, S.-K. Chem. Commun. 2012, 48, 898.  doi: 10.1039/C1CC16630A

    36. [36]

      Yang, W.; Long, Y.; Zhang, S.; Zeng, Y.; Cai, Q. Org. Lett. 2013, 15, 3598.  doi: 10.1021/ol401449b

    37. [37]

      Narine, A. A.; Toulgoat, F.; Bisschops, T.; Enders, D. Angew. Chem., Int. Ed. 2008, 47, 5661.  doi: 10.1002/anie.200801354

    38. [38]

      Reznichenko, A. L.; Hampel, F.; Hultzsch, K. C. Chem.-Eur. J. 2009, 15, 12819.  doi: 10.1002/chem.200902229

    39. [39]

      Li, G.-Q.; Li, Y.; Dai, L.-X.; You, S.-L. Adv. Synth. Catal. 2008, 350, 1258.  doi: 10.1002/adsc.200800071

    40. [40]

      Dong, S.; Liu, X.; Zhu, Y.; He, P.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2013, 135, 10026.  doi: 10.1021/ja404379n

    41. [41]

      Wang, M.; Huang, Z.; Xu, J.; Chi, Y. R. J. Am. Chem. Soc. 2014, 136, 1214.  doi: 10.1021/ja411110f

    42. [42]

      Minato, M.; Arimoto, H.; Nagasue, Y.; Demizu, Y.; Onomura, O. Tetrahedron 2008, 64, 6675.  doi: 10.1016/j.tet.2008.05.015

    43. [43]

      Minato, D.; Nagasue, Y.; Demizu, Y.; Onomura, O. Angew. Chem., Int. Ed. 2008, 47, 9458.  doi: 10.1002/anie.200804188

    44. [44]

      Sibi, M. P.; Kawashima, K.; Stanley, L. M. Org. Lett. 2009, 11, 3894.  doi: 10.1021/ol901504p

    45. [45]

      Kong, D.; Han, S.; Wang, R.; Li, M.; Zi, G.; Hou, G. Chem. Sci. 2017, 8, 4558.  doi: 10.1039/C7SC01556A

    46. [46]

      Cochrane, E. J.; Leonori, D.; Hassallb, L. A.; Coldham, I. Chem. Commun. 2014, 50, 9910.  doi: 10.1039/C4CC04576A

    47. [47]

      Lei, B.-L.; Zhang, Q.-S.; Yu, W.-H.; Ding, Q.-P.; Ding, C.-H.; Hou, X.-L. Org. Lett. 2014, 16, 1944.  doi: 10.1021/ol500498m

    48. [48]

      Xiao, K.-J.; Chu, L.; Chen, G.; Yu, G.-Q. J. Am. Chem. Soc. 2016, 138, 7796.  doi: 10.1021/jacs.6b04660

    49. [49]

      Zou, X.; Zhao, H.; Li, Y.; Gao, Q.; Ke, Z.; Xu, S. J. Am. Chem. Soc. 2019, 141, 5334.  doi: 10.1021/jacs.8b13756

  • 加载中
    1. [1]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    18. [18]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

Metrics
  • PDF Downloads(69)
  • Abstract views(2643)
  • HTML views(807)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return