Citation: Sun Yue, Guan Rui, Liu Zhaohong, Wang Yeming. Recent Advances in Hydroboration of Alkenes Catalyzed by Fe, Co and Ni[J]. Chinese Journal of Organic Chemistry, ;2020, 40(4): 899-912. doi: 10.6023/cjoc201909035 shu

Recent Advances in Hydroboration of Alkenes Catalyzed by Fe, Co and Ni

Figures(18)

  • The synthesis of alkyl boronic esters has attracted much attention because of their wide applications in organic synthesis, materials and medicines. Transition-metal catalyzed hydroboration of alkenes was one of the most effective methods to construct alkyl boronic esters. Compared with rhodium, ruthenium, palladium, iridium and other precious metal catalysts, iron, cobalt and nickel catalysts were not only low cost, but also they displayed unique reactivity and selectivity. In this paper, the important advances in hydroboration of alkenes catalyzed by iron, cobalt and nickel have been summarized since 1994, including catalytic activity, selectivity and substrate scope of different catalytic systems.
  • 加载中
    1. [1]

      Brown, H. C.; Singaram, B. Pure Appl. Chem. 1987, 59, 879.  doi: 10.1351/pac198759070879

    2. [2]

      Stymiest, J. L.; Bagutski, V.; French R. M.; Aggarwal, V. K. Nature 2008, 456, 778.  doi: 10.1038/nature07592

    3. [3]

      Bagutski, V.; French R. M.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2010, 49, 5142.  doi: 10.1002/anie.201001371

    4. [4]

      Bull, J. A. Angew. Chem., Int. Ed. 2012, 51, 8930.  doi: 10.1002/anie.201203876

    5. [5]

      Mlynarski, S. N.; Karns, A. S.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 16449.  doi: 10.1021/ja305448w

    6. [6]

      Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6723.
       

    7. [7]

      Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc. 1956, 78, 2582.  doi: 10.1021/ja01592a070

    8. [8]

      Mattraw, H. C.; Erickson, C. E.; Laubengayer, A. W. J. Am. Chem. Soc. 1956, 78, 4901.  doi: 10.1021/ja01600a024

    9. [9]

      McCusker, P. A.; Ashby, E. C.; Makowski, H. S. J. Am. Chem. Soc. 1957, 79, 5179.  doi: 10.1021/ja01576a026

    10. [10]

      Washburn, R. M.; Levens, E.; Albright, C. F.; Billig, F. A.; Cernak, E. S. Adv. Chem. Ser. 1959, 23, 102.

    11. [11]

      Matteson, D. S.; Liedtke, J. D. J. Am. Chem. Soc. 1965, 87, 1526.  doi: 10.1021/ja01085a021

    12. [12]

      Dhillon, R. S. Hydroboration and Organic Synthesis, Springer Berlin Heidelberg, New York, 2007, pp. 59~99.

    13. [13]

      Mannig, D.; Noth, H. Angew. Chem., Int. Ed. 1985, 24, 878.  doi: 10.1002/anie.198508781

    14. [14]

      Burgess K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.  doi: 10.1021/cr00006a003

    15. [15]

      Beletskaya, I.; Pelter, A. Tetrahedron 1997, 53, 4957.  doi: 10.1016/S0040-4020(97)00001-X

    16. [16]

      Crudden, C. M.; Edwards, D. Eur. J. Org. Chem. 2003, 4695.

    17. [17]

      Vogels, C. M.; Westcott, S. A. Curr. Org. Chem. 2005, 9, 687.  doi: 10.2174/1385272053765060

    18. [18]

      Carroll, A.-M.; O'Sullivan, T. P.; Guiry, P. J. Adv. Synth. Catal. 2005, 347, 609.  doi: 10.1002/adsc.200404232

    19. [19]

      Wu, Y.; Shan, C.; Ying, J.; Su, J.; Zhu, J.; Liu, L. L.; Zhao, Y. Green Chem. 2017, 19, 4169.  doi: 10.1039/C7GC01632H

    20. [20]

      Ma, D. H.; Jaladi, A. K.; Lee, J. H.; Kim, T. S.; Shin, W. K.; Hwang, H.; An, D. ACS Omega 2019, 4, 15893.  doi: 10.1021/acsomega.9b01877

    21. [21]

    22. [22]

      Zhang, L.; Huang, Z. Synlett 2013, 1745.

    23. [23]

      Obligacion, J. V.; Chirik, P. J. Nat. Rev. Chem. 2018, 2, 15.  doi: 10.1038/s41570-018-0001-2

    24. [24]

      Chen, J.; Lu, Z. Org. Chem. Front. 2018, 5, 260.  doi: 10.1039/C7QO00613F

    25. [25]

      Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.  doi: 10.1002/cjoc.201800314

    26. [26]

      Fan, W.; Li, L.; Zhang, G. J. Org. Chem. 2019, 84, 5987.  doi: 10.1021/acs.joc.9b00550

    27. [27]

      Wang, Y.; Li, W.; Che, G.; Bi, X.; Liao, P.; Zhang, Q.; Liu, Q. Chem. Commun. 2010, 46, 6843.  doi: 10.1039/c0cc01758b

    28. [28]

      Wang, Y.; Bi, X.; Li, D.; Liao, P.; Wang, Y. Yang, J. Zhang, Q. Liu, Q. Chem. Commun. 2011, 47, 809.  doi: 10.1039/C0CC03802D

    29. [29]

      Wang, Y.; Bi, X.; Li, W.; Li, D.; Zhang, Q.; Liu, Q.; Ondon, B. S. Org. Lett. 2011, 13, 1722.  doi: 10.1021/ol200246x

    30. [30]

      Li, Q.; Wang, Y.; Fang, Z.; Liao, P.; Barry, B.; Che, G.; Bi, X. Synthesis 2013, 609.
       

    31. [31]

      Sun, B.; Ma, Q.; Wang, Y.; Zhao, Y.; Liao, P.; Bi, X. Eur. J. Org. Chem. 2014, 34, 7552.

    32. [32]

      Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217.  doi: 10.1021/cr040664h

    33. [33]

      Correa, A.; Mancheno, O.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108.  doi: 10.1039/b801794h

    34. [34]

      Baucer, E. B. Curr. Org. Chem. 2008, 12, 1341.  doi: 10.2174/138527208786241556

    35. [35]

      Greenhalgh, M. D.; Thomas, S. P. Chem. Cat. Chem. 2014, 6, 1520.

    36. [36]

      Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170.  doi: 10.1021/cr500425u

    37. [37]

      Mako, T. L.; Byers, J. A. Inorg. Chem. Front. 2016, 3, 766.  doi: 10.1039/C5QI00295H

    38. [38]

      Shang, R.; Ilies, L.; Nakamu, E. Chem. Rev. 2017, 117, 9086.  doi: 10.1021/acs.chemrev.6b00772

    39. [39]

      Li, Y.; Hu, Y.; Wu, X. Chem. Soc. Rev. 2018, 47, 172.  doi: 10.1039/C7CS00529F

    40. [40]

      Wu, J. Y.; Moreau, B.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 12915.  doi: 10.1021/ja9048493

    41. [41]

      Cao, Y.; Zhang, Y.; Zhang, L.; Zhang, D.; Leng, X.; Huang, Z. Org. Chem. Front. 2014, 1, 1101.  doi: 10.1039/C4QO00206G

    42. [42]

      Zhang, L.; Peng, D.; Leng, X.; Huang, Z. Angew. Chem., Int. Ed. 2013, 52, 3676.  doi: 10.1002/anie.201210347

    43. [43]

      Gilbert-Wilson, R.; Chu, W.-Y.; Rauchfuss, T. B. Inorg. Chem. 2015, 54, 5596.  doi: 10.1021/acs.inorgchem.5b00692

    44. [44]

      Espinal-Viguri, M.; Woof, C. R.; Webster, R. L. Chem.-Eur. J. 2016, 22, 11605.  doi: 10.1002/chem.201602818

    45. [45]

      Obligacion, J. V.; Chirik, P. J. Org. Lett. 2013, 15, 2680.  doi: 10.1021/ol400990u

    46. [46]

      Chen, J.; Xi, T.; Lu, Z. Org. Lett. 2014, 16, 6452.  doi: 10.1021/ol503282r

    47. [47]

      Tseng, K. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 411.  doi: 10.1021/cs501820w

    48. [48]

      Zheng, J.; Sortais, J.-B.; Darcel, C. Chem. Cat. Chem. 2014, 6, 763.
       

    49. [49]

      Cruz, T. F. C.; Pereira, L. C. J.; Waerenborgh, J. C.; Veiros, L. F.; Gomes. P. T. Catal. Sci. Technol. 2019, 9, 3347.  doi: 10.1039/C8CY02319K

    50. [50]

      Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2013, 49, 11230.  doi: 10.1039/c3cc46727a

    51. [51]

      Agahi, R.; Challinor, A. J.; Carter, N. B.; Thomas, S. P. Org. Lett. 2019, 21, 993.  doi: 10.1021/acs.orglett.8b03986

    52. [52]

      Liu, Y.; Zhou, Y.; Wang, H.; Qu, J. RSC Adv. 2015, 5, 73705.  doi: 10.1039/C5RA14869C

    53. [53]

      Macnair, A. J.; Millet, C. R. P.; Nichol, G. S.; Ironmonger, A.; Thomas, S. P. ACS Catal. 2016, 6, 7217.  doi: 10.1021/acscatal.6b02281

    54. [54]

      Chen, X.; Cheng, Z.; Lu, Z. Org. Lett. 2017, 19, 969.  doi: 10.1021/acs.orglett.7b00227

    55. [55]

      Chen, C.; Shen, X.; Chen, J.; Hong, X.; Lu, Z. Org. Lett. 2017, 19, 5422.  doi: 10.1021/acs.orglett.7b02691

    56. [56]

      Zaidlewicz, M.; Meller, J. Tetrahedron Lett. 1997, 38, 7279.  doi: 10.1016/S0040-4039(97)01691-2

    57. [57]

      Obligacion, J. V.; Chirik, P. J. J. Am. Chem. Soc. 2013, 135, 19107.  doi: 10.1021/ja4108148

    58. [58]

      Zhang, L.; Zuo, Z.; Leng, X.; Huang, Z. Angew. Chem., Int. Ed. 2014, 53, 2696.  doi: 10.1002/anie.201310096

    59. [59]

      Ruddy, A. J.; Sydora, O. L.; Small, B. L.; Stradiotto, M.; Turculet, L. Chem. Eur. J. 2014, 20, 13918.  doi: 10.1002/chem.201403945

    60. [60]

      Docherty, J. H.; Peng, J.; Dominey, A. P.; Thomas, S. P. Nat. Chem. 2017, 9, 595.  doi: 10.1038/nchem.2697

    61. [61]

      Ibrahim, A. D.; Entsminger, S. W.; Fout. A. R. ACS Catal. 2017, 7, 3730.  doi: 10.1021/acscatal.7b00362

    62. [62]

      Pang, M.; Wu, C.; Zhuang, X.; Zhang, F.; Su, M.; Tong, Q.; Tung, C.-H.; Wang, W. Organometallics 2018, 37, 1462.  doi: 10.1021/acs.organomet.8b00114

    63. [63]

      Cruz, T. F. C.; Lopes, P. S.; Pereira, L. C. J.; Veiros, L. F.; Gomes, P. T. Inorg. Chem. 2018, 57, 8146.  doi: 10.1021/acs.inorgchem.8b00568

    64. [64]

      Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z. J. Am. Chem. Soc. 2014, 136, 15501.  doi: 10.1021/ja5093908

    65. [65]

      Chen, J.; Xi, T.; Ren, X.; Cheng, B.; Guo J.; Lu, Z. Org. Chem. Front. 2014, 1, 1306.  doi: 10.1039/C4QO00295D

    66. [66]

      Zhang, H.; Lu, Z. ACS Catal. 2016, 6, 6596.  doi: 10.1021/acscatal.6b02278

    67. [67]

      Teo, W. J.; Ge, S. Angew. Chem., Int. Ed. 2018, 57, 12935.  doi: 10.1002/anie.201805705

    68. [68]

      Duvvuri, K.; Dewese, K. R.; Parsutkar, M. M.; Jing, S. M.; Mehta, M. M.; Gallucci, J. C.; RajanBabu, T. V. J. Am. Chem. Soc. 2019, 141, 7365.  doi: 10.1021/jacs.8b13812

    69. [69]

      Peng, S.; Yang, J.; Liu, G.; Huang, Z. Sci. China Chem. 2019, 62, 336.  doi: 10.1007/s11426-018-9418-7

    70. [70]

      Palmer, W. N.; Diao, T.; Pappas, I.; Chirik, P. J. ACS Catal. 2015, 5, 622.  doi: 10.1021/cs501639r

    71. [71]

      Reilly, S. W.; Webster, C. E.; Hollis, T. K.; Valle, H. U. Dalton Trans. 2016, 45, 2823.  doi: 10.1039/C5DT04752H

    72. [72]

      Peng, J.; Docherty, J. H.; Dominey, A. P.; Thomas, S. P. Chem. Commun. 2017, 53, 4726.  doi: 10.1039/C7CC01085K

    73. [73]

      Zhang, G.; Wu, J.; Wang, M.; Zeng, H.; Cheng, J.; Neary, M. C.; Zheng, S. Eur. J. Org. Chem. 2017, 2017, 5814.  doi: 10.1002/ejoc.201701047

    74. [74]

      Zhang, G.; Wu, J.; Li, S.; Cass, S.; Zheng, S. Org. Lett. 2018, 20, 7893.  doi: 10.1021/acs.orglett.8b03431

    75. [75]

      Verma, P. K.; Sethulekshmi, A. S.; Geetharani, K. Org. Lett. 2018, 20, 7840.  doi: 10.1021/acs.orglett.8b03356

    76. [76]

      Tamang, S. R.; Bedi, D.; Shafiei-Haghighi, S.; Smith, C. R.; Crawford, C.; Findlater, M. Org. Lett. 2018, 20, 6695.  doi: 10.1021/acs.orglett.8b02775

    77. [77]

      Chen, X.; Cheng, Z.; Lu, Z. ACS Catal. 2019, 9, 4025.  doi: 10.1021/acscatal.8b05135

    78. [78]

      Scheuermann, M. L.; Johnson, E. J.; Chirik, P. J. Org. Lett. 2015, 17, 2716.  doi: 10.1021/acs.orglett.5b01135

    79. [79]

      Ogawa, T.; Ruddy, A. J.; Sydora, O. L.; Stradiotto, M.; Turculet, L. Organometallics 2017, 36, 417.  doi: 10.1021/acs.organomet.6b00823

    80. [80]

      Chen, X.; Cheng, Z.; Guo, J.; Lu, Z. Nat. Comm. 2018, 9, 3939.  doi: 10.1038/s41467-018-06240-y

    81. [81]

      Chong, C. C.; Kinjo, R. ACS Catal. 2015, 5, 3238.  doi: 10.1021/acscatal.5b00428

    82. [82]

      Shegavi, M. L.; Bose, S. K. Catal. Sci. Technol. 2019, 9, 3307.  doi: 10.1039/C9CY00807A

    83. [83]

      Tamang, S. R.; Findlater, M. J. Org. Chem. 2017, 82, 12857.  doi: 10.1021/acs.joc.7b02020

    84. [84]

      Guo, J.; Chen, J.; Lu, Z. Chem. Commun. 2015, 51, 5725.  doi: 10.1039/C5CC01084E

    85. [85]

      King, A. E.; Stieber, S. C. E.; Henson, N. J.; Kozimor, S. A.; Scott, B. L.; Smythe, N. C.; Sutton, A. D.; Gordon, J. C. Eur. J. Inorg. Chem. 2016, 2016, 1635.  doi: 10.1002/ejic.201600143

    86. [86]

      Zhang, G.; Zeng, H.; Wu, J.; Yin, Z.; Zheng, S.; Fittinger, J. C. Angew. Chem., Int. Ed. 2016, 55, 14369.  doi: 10.1002/anie.201607579

    87. [87]

      Kabalka, G. W.; Narayana, C.; Reddy, N. K. Synth. Commun. 1994, 24, 1019.  doi: 10.1080/00397919408020777

    88. [88]

      Pereira, S.; Srebnik, M. Tetrahedron Lett. 1996, 37, 3283.  doi: 10.1016/0040-4039(96)00576-X

    89. [89]

      Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 5031.  doi: 10.1021/ol702254g

    90. [90]

      Lillo, V.; Geier, M. J.; Westcott, S. A.; Fernández, E. Org. Biomol. Chem. 2009, 7, 4674.  doi: 10.1039/b909341a

    91. [91]

      Ely, R. J.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 2534.  doi: 10.1021/ja910750b

    92. [92]

      Ely, R. J.; Morken, J. P. Org. Lett. 2010, 12, 4348.  doi: 10.1021/ol101797f

    93. [93]

      Ely, R. J.; Yu, Z.; Morken, J. P. Tetrahedron Lett. 2015, 56, 3402.  doi: 10.1016/j.tetlet.2015.01.123

    94. [94]

      Touney, E. E.; Hoveln, R. V.; Buttke, C. T.; Freidberg, M. D.; Guzei, I. A.; Schomaker, J. M. Organometallics 2016, 35, 3436.  doi: 10.1021/acs.organomet.6b00652

    95. [95]

      Li, J.-F.; Wei, Z.-Z.; Wang, Y.-Q.; Ye, M. Green Chem. 2017, 19, 4498.  doi: 10.1039/C7GC02282D

    96. [96]

      Kamei, T.; Nishino, S.; Shimada, T. Tetrahedron Lett. 2018, 59, 2896.  doi: 10.1016/j.tetlet.2018.06.024

    97. [97]

      Vijaykumar, G.; Bhunia, M.; Mandal, S. K. Dalton Trans. 2019, 48, 5779.  doi: 10.1039/C9DT00468H

    98. [98]

      Vijaykumar, G.; Pariyar, A.; Ahmed, J.; Shaw, B. K.; Adhikari, D.; Mandal, S. K. Chem. Sci. 2018, 9, 2817.  doi: 10.1039/C7SC04687A

    99. [99]

      Haberberger, M.; Enthaler, S. Chem. Asian J. 2013, 8, 50.  doi: 10.1002/asia.201200931

    100. [100]

      Obligacion, J. V.; Neely, J. M., Yazdani, A. N.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2015, 137, 5855.  doi: 10.1021/jacs.5b00936

    101. [101]

      Zuo, Z.; Huang, Z. Org. Chem. Front. 2016, 3, 434.  doi: 10.1039/C5QO00426H

    102. [102]

      Nakajima, K.; Kato, T.; Nishibayashi, Y. Org. Lett. 2017, 19, 4323.  doi: 10.1021/acs.orglett.7b01995

    103. [103]

      Gorgas, N.; Alves, L. G.; Stoeger, B.; Martins A. M.; Veiros, L. F.; Kirchner, K. J. Am. Chem. Soc. 2017, 139, 8130.  doi: 10.1021/jacs.7b05051

    104. [104]

      Ferrand, L.; Lyu, Y.; Rivera-Hernández, A.; Fallon, B. J.; Amatore, M.; Aubert, C.; Petit, M. Synthesis 2017, 49, 3895.  doi: 10.1055/s-0036-1588996

    105. [105]

      Ben-Daat, H.; Rock, C. L.; Flores, M.; Groy, T. L.; Bowmanb, A. C.; Trovitch, R. J. Chem. Commun. 2017, 53, 7333.  doi: 10.1039/C7CC02281F

    106. [106]

      Zuo, Z.; Wen, H.; Liu, G.; Huang, Z. Synlett 2018, 29, 1421.  doi: 10.1055/s-0037-1609682

    107. [107]

      Li, L.; Liu, E.; Cheng, J.; Zhang, G. Dalton Trans. 2018, 47, 9579.  doi: 10.1039/C8DT02134A

    108. [108]

      Wu, J.; Zeng, H.; Cheng, J.; Zheng, S.; Golen, J. A.; Manke, D. R.; Zhang, G. J. Org. Chem. 2018, 83, 16, 9442.

    109. [109]

      Zhang, G.; Cheng, J.; Davis, K.; Bonifacioa, M. G.; Zajaczkowskia, C. Green Chem. 2019, 21, 1114.  doi: 10.1039/C9GC00078J

    110. [110]

      Zhang, G.; Li, S.; Wu, J.; Zeng, H.; Mo, Z.; Davisa, K.; Zheng, S. Org. Chem. Front. 2019, 6, 3228.  doi: 10.1039/C9QO00834A

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    11. [11]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    14. [14]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    18. [18]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

Metrics
  • PDF Downloads(107)
  • Abstract views(3800)
  • HTML views(1050)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return