Iron-Catalyzed Deoxygenative Diborylation of Ketones to Internal gem-Diboronates
- Corresponding author: Liu Chao, chaoliu@licp.cas.cn
	            Citation:
	            
		            He Zeyu, Fan Min, Xu Jia'neng, Hu Yue, Wang Lu, Wu Xudong, Xia Chungu, Liu Chao. Iron-Catalyzed Deoxygenative Diborylation of Ketones to Internal gem-Diboronates[J]. Chinese Journal of Organic Chemistry,
							;2019, 39(12): 3438-3445.
						
							doi:
								10.6023/cjoc201909008
						
					
				
					 
				
	        
 
	                
				(a) Nallagonda, R.; Padala, K.; Masarwa, A. Org. Biomol. Chem. 2018, 16, 1050. 
 (b) Wu, C.; Wang, J. Tetrahedron Lett. 2018, 59, 2128.
 (c) Zhang, Z.-Q.; Yang, C.-T.; Liang, L.-J.; Xiao, B.; Lu, X.; Liu, J.-H.; Sun, Y.-Y.; Marder, T. B.; Fu, Y. Org. Lett. 2014, 16, 6342. 
 (d) Zhang, Z.-Q.; Zhang, B.; Lu, X.; Liu, J.-H.; Lu, X.-Y.; Xiao, B.; Fu, Y. Org. Lett. 2016, 18, 952. 
 (e) Sun, W.; Wang, L.; Xia, C.; Liu, C. Angew. Chem., Int. Ed. 2018, 57, 5501. 
 (f) Brown, H. C.; Rhodes, S. P. J. Am. Chem. Soc. 1969, 91, 4306. 
 (g) Coombs, J. R.; Zhang, L.; Morken, J. P. Org. Lett. 2015, 17, 1708.
 (h) Endo, K.; Hirokami, M.; Shibata, T. J. Org. Chem. 2010, 75, 3469. 
 (i) Endo, K.; Ohkubo, T.; Hirokami, M.; Shibata, T. J. Am. Chem. Soc. 2010, 132, 11033. 
 (j) Endo, K.; Ohkubo, T.; Ishioka, T.; Shibata, T. J. Org. Chem. 2012, 77, 4826. 
 (k) Endo, K.; Ohkubo, T.; Shibata, T. Org. Lett. 2011, 13, 3368. 
 (l) Hong, K.; Liu, X.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 10581. 
 (m) Jo, W.; Kim, J.; Choi, S.; Cho, S. H. Angew. Chem., Int. Ed. 2016, 55, 9690.
 (n) Kim, J.; Park, S.; Park, J.; Cho, S. H. Angew. Chem., Int. Ed. 2016, 55, 1498. 
 (o) Li, H.; Zhang, Z.; Shangguan, X.; Huang, S.; Chen, J.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 11921. 
 (p) Matteson, D. S.; Moody, R. J. J. Am. Chem. Soc. 1977, 99, 3196. 
 (q) Matteson, D. S.; Moody, R. J. Organometallics 1982, 1, 20. 
 (r) Matteson, D. S.; Moody, R. J.; Jesthi, P. K. J. Am. Chem. Soc. 1975, 97, 5608. 
 (s) Park, J.; Lee, Y.; Kim, J.; Cho, S. H. Org. Lett. 2016, 18, 1210. 
 (t) Potter, B.; Edelstein, E. K.; Morken, J. P. Org. Lett. 2016, 18, 3286. 
 (u) Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 17918. 
 (v) Sun, C.; Potter, B.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 6534. 
 (w) Xu, S.; Shangguan, X.; Li, H.; Zhang, Y.; Wang, J. J. Org. Chem. 2015, 80, 7779.
 (x) Zhan, M.; Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D. ACS Catal. 2016, 6, 3381. 
 (y) Iacono, C. E.; Stephens, T. C.; Rajan, T. S.; Pattison, G. J. Am. Chem. Soc. 2018, 140, 2036. 
 (z) Kim, J.; Shin, M.; Cho, S. H. ACS Catal. 2019, 8503.
 (aa) Kim, J.; Lee, E.; Cho, S. H. Asian J. Org. Chem. 2019, 8, 1664. 
 (ab) Lee, H.; Lee, Y.; Cho, S. H. Org. Lett. 2019, 21, 5912. 
 (ac) Kim, J.; Hwang, C.; Kim, Y.; Cho, S. H. Org. Process Res. Dev. 2019, 23, 1663. 
 (ad) Kim, J.; Cho, S. H. ACS Catal. 2019, 9, 230. 
 (ae) Park, J.; Choi, S.; Lee, Y.; Cho, S. H. Org. Lett. 2017, 19, 4054. 
 (af) Kim, J.; Ko, K.; Cho, S. H. Angew. Chem., Int. Ed. 2017, 56, 11584. 
 (ag) Lee, Y.; Park, J.; Cho, S. H. Angew. Chem., Int. Ed. 2018, 57, 12930.
				(a) Zheng, P.; Zhai, Y.; Zhao, X.; Xu, T. Chem. Commun. 2018, 54, 13375. 
 (b) Zheng, P.; Zhai, Y.; Zhao, X.; Xu, T. Org. Lett. 2019, 21, 393.
				(a) Zhao, H.; Tong, M.; Wang, H.; Xu, S. Org. Biomol. Chem. 2017, 15, 3418. 
 (b) Hwang, C.; Jo, W.; Cho, S. H. Chem. Commun. 2017, 53, 7573. 
 (c) Liu, X.; Deaton, T. M.; Haeffner, F.; Morken, J. P. Angew. Chem., Int. Ed. 2017, 56, 11485.
				(a) Harris, M. R.; Wisniewska, H. M.; Jiao, W.; Wang, X.; Bradow, J. N. Org. Lett. 2018, 20, 2867. 
 (b) Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481. 
 (c) Liu, Y.; Zhang, W. Chin. J. Org. Chem. 2016, 36, 2249 (in Chinese). 
 (刘媛媛, 张万斌, 有机化学, 2016, 36, 2249.)
 (d) Chen, D.; Xu, M.-H. Chin. J. Org. Chem. 2017, 37, 1589 (in Chinese).
 (陈雕, 徐明华, 有机化学, 2017, 37, 1589.)
 (e) Xu, X.; Cheng, R.; Qiu, Z.; Pan, C. Chin. J. Org. Chem. 2018, 38, 3078 (in Chinese). 
 (许新彬, 程若飞, 邱早早, 潘成岭, 有机化学, 2018, 38, 3078.)
				Li, Z.; Wang, Z.; Zhu, L.; Tan, X.; Li, C. J. Am. Chem. Soc. 2014, 136, 16439.
												 doi: 10.1021/ja509548z
											
										
				Masaki, S.; Michael, S.; Ikuhiro, N.; Katsuhiro, S.; Takuya, K.; Tamejiro, H. Chem. Lett. 2006,  35, 1222.
												 doi: 10.1246/cl.2006.1222
											
										
				(a) Edelstein, E. K.; Grote, A. C.; Palkowitz, M. D.; Morken, J. P. Synlett 2018, 29, 1749.
 (b) Li, X.; Hall, D. G. Angew. Chem., Int. Ed. 2018, 57, 10304.
				(a) Palmer, W. N.; Zarate, C.; Chirik, P. J. J. Am. Chem. Soc. 2017, 139, 2589. 
 (b) Zhang, L.; Huang, Z. J. Am. Chem. Soc. 2015, 137, 15600.
				(a) Brown, H. C.; Scouten, C. G.; Liotta, R. J. Am. Chem. Soc. 1979, 101, 96. 
 (b) Espinal-Viguri, M.; Woof, C. R.; Webster, R. L. Chem.-Eur. J. 2016, 22, 11605. 
 (c) He, T.; Li, B.; Liu, L.-C.; Wang, J.; Ma, W.-P.; Li, G.-Y.; Zhang, Q.-W.; He, W. Chem.-Eur. J. 2019, 25, 966. 
 (d) Yukimori, D.; Nagashima, Y.; Wang, C.; Muranaka, A.; Uchiyama, M. J. Am. Chem. Soc. 2019, 141, 9819. 
 (e) Yuma, N.; Naofumi, T. Lett. Org. Chem. 2017, 14, 243.
				Lee, S.; Li, D.; Yun, J. Chem.-Asian J. 2014,  9, 2440.
												 doi: 10.1002/asia.201402458
											
										
				(a) Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 448.
 (b) Cuenca, A. B.; Cid, J.; García-López, D.; Carbó, J. J.; Fernández, E. Org. Biomol. Chem. 2015, 13, 9659.
				(a) Abu Ali, H.; Goldberg, I.; Kaufmann, D.; Burmeister, C.; Srebnik, M. Organometallics 2002, 21, 1870. 
 (b) Wommack, A. J.; Kingsbury, J. S. Tetrahedron Lett. 2014, 55, 3163.
				Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017,  139, 5257.
												 doi: 10.1021/jacs.7b02518
											
										
				He, Z.; Zhu, Q.; Hu, X.; Wang, L.; Xia, C.; Liu, C. Org. Chem. Front. 2019,  6, 900.
												 doi: 10.1039/C9QO00007K
											
										
				Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014,  6, 584.
												 doi: 10.1038/nchem.1971
											
										
				(a) Bedford, R. B.; Brenner, P. B.; Carter, E.; Gallagher, T.; Murphy, D. M.; Pye, D. R. Organometallics 2014, 33, 5940. 
 (b) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. J. Am. Chem. Soc. 2006, 128, 11036. 
 (c) Nakagawa, N.; Hatakeyama, T.; Nakamura, M. Chem.-Eur. J. 2015, 21, 4257. 
 (d) Zhao, H.; Dang, L.; Marder, T. B.; Lin, Z. J. Am. Chem. Soc. 2008, 130, 5586. 
 (e) Zhou, Y.; Wang, H.; Liu, Y.; Zhao, Y.; Zhang, C.; Qu, J. Org. Chem. Front. 2017, 4, 1580.
 
						
						
						
	                Shuai Tang , Zian Wang , Mengyi Zhu , Xinyun Zhao , Xiaoyun Hu , Hua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503
Mengyu Wu , Kewei Ren , Chengyu Zou , Jiacheng Chen , Rui Ma , Chuan Zhu , Chao Feng . A general synthesis of gem–difluorobicyclo[2.1.1]hexanes. Chinese Chemical Letters, 2025, 36(5): 110213-. doi: 10.1016/j.cclet.2024.110213
Wen-Tao Ouyang , Jun Jiang , Yan-Fang Jiang , Ting Li , Yuan-Yuan Liu , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
Yi ZHANG , Guang LI , Wenxuan FAN , Qingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
Zhongsen Wang , Lijun Qiu , Yunhua Huang , Meng Zhang , Xi Cai , Fanyu Wang , Yang Lin , Yanbiao Shi , Xiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200
Jiyang Liu , Xiangzhang Tao , Zhenlei Zou , Jia Xu , Hui Shu , Yi Pan , Weigang Zhang , Shengyang Ni , Yi Wang . Modular and practical synthesis of gem-difluoroalkenes via consecutive Ni-catalyzed reductive cross-coupling. Chinese Chemical Letters, 2025, 36(7): 110461-. doi: 10.1016/j.cclet.2024.110461
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Jing Guo , Jianzhong Ma , Junli Liu , Guanjie Huang , Xiaoting Zhou , Francesco Parrino , Riccardo Ceccato , Leonardo Palmisano , Boon-Junn Ng , Lutfi Kurnianditia Putri , Huaxing Li , Rongjie Li , Gang Liu , Yang Wang , Nikolay Kornienko , Shan-Shan Zhu , Zhenwei Zhang , Xiaoming Liu , Nur Atika Nikma Dahlan , Siang-Piao Chai , Jianmin Ma . Two-dimensional nanomaterials for environmental catalysis roadmap towards 2030. Chinese Chemical Letters, 2025, 36(9): 110988-. doi: 10.1016/j.cclet.2025.110988
Xing Tian , Di Wu , Wanheng Wei , Guifu Dai , Zhanxian Li , Benhua Wang , Mingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912
Conditions and regents: 1s (10.0 mmol), B2pin2 (2.8 equiv. 28.0 mmol), NaOtBu (1.3 equiv. 13.0 mmol), FeBr2 (10 mol%, 1.0 mmol), toluene (50.0 mL), 100 ℃ for 5 h in N2 atmosphere. Yields are based on isolated products
Reaction conditions: (a) 2wa (0.39 mmol), 1-bromoocatane (0.3 mmol), NaOtBu (0.9 mmol), THF, r.t., 12 h; (b) 2wa (0.375 mmol), MeLi (0.625 mmol, 1.6 mol/L in diethyl ether), benzoic acid (0.25 mmol), methyl bromoacetate (0.5 mmol), THF; (c) 2-bromothiophene (0.36 mmol), nBuLi (0.36 mmol, 1.6 mol/L in hexanes), 3a (0.3 mmol), NBS (0.36 mmol), THF.