Citation: Liu Jinbao, Li Peng, Yao Zijian. Recent Progress of Discrete Metallacycles Based on the Half-Sandwich Ir/Rh/Ru Motifs[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 364-375. doi: 10.6023/cjoc201908009 shu

Recent Progress of Discrete Metallacycles Based on the Half-Sandwich Ir/Rh/Ru Motifs

  • Corresponding author: Liu Jinbao, hgliujinbao@163.com Yao Zijian, zjyao@sit.edu.cn
  • Received Date: 5 August 2019
    Revised Date: 17 September 2019
    Available Online: 9 February 2019

    Fund Project: the Chenguang Scholar of Shanghai Municipal Education Commission 16CG64the Chenguang Scholar of Shanghai Municipal Education Commission 18CGB12Project supported by the National Natural Science Foundation of China (No. 21601125), the Chenguang Scholar of Shanghai Municipal Education Commission (Nos. 16CG64, 18CGB12)the National Natural Science Foundation of China 21601125

Figures(20)

  • Discrete metallacycle complexes have attracted considerable attention because of their widely used in host-guest chemistry, gas adsorption, molecular recognition and catalysis. Thus exploring new framework complexes, studying their physical and chemical properties and applications have become one of the most active and exciting areas of inorganic chemistry, organic chemistry and supramolecular chemistry. Half-sandwich organometallic units based on ruthenium, iridium and rhodium are often utilized to prepare diverse metallacylce complexes due to the following advantages:the solubility of these metal complexes can be enhanced, the hemisphere of the metal center is perfectly shielded, minimizing the complexity of reactions, and the products with different structures are easily synthesized. In this paper, the synthesis and application of discrete type metal framework complexes with half-sandwich structures of ruthenium, iridium and rhodium are reviewed.
  • 加载中
    1. [1]

      Swiegers, G. F.; Malefetse, T. J. Chem. Rev. 2000, 100, 3483.  doi: 10.1021/cr990110s

    2. [2]

      Thomas, J. A. Chem. Soc. Rev. 2007, 36, 856.  doi: 10.1039/b415246h

    3. [3]

      Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.  doi: 10.1002/1521-3773(20010601)40:11<2022::AID-ANIE2022>3.0.CO;2-D

    4. [4]

      Gianneschi, N. C.; Masar, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825.  doi: 10.1021/ar980101q

    5. [5]

      James, S. L. Chem. Soc. Rev. 2003, 32, 276.  doi: 10.1039/b200393g

    6. [6]

      Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196.  doi: 10.1021/cr2003147

    7. [7]

      Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810.  doi: 10.1021/cr200077m

    8. [8]

      Pluth, M. D.; Raymond, K. N. Chem. Soc. Rev. 2007, 36, 161.  doi: 10.1039/B603168B

    9. [9]

      Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418.  doi: 10.1002/anie.200805340

    10. [10]

      Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2009, 42, 1650.  doi: 10.1021/ar900118t

    11. [11]

      Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Chem. Soc. Rev. 2008, 37, 247.  doi: 10.1039/B614961H

    12. [12]

      (a) Harris, K.; Fujita, D.; Fujita, M. Chem. Commun. 2013, 49, 6703.
      (b) Ma, L.-L.; An, Y.-Y.; Sun, L.-Y.; Wang, Y.-Y.; Hahn, F. E.; Han, Y.-F. Angew. Chem., Int. Ed. 2019, 58, 3986.
      (c) Wang, Y.-S.; Feng, T.; Wang, Y.-Y.; Hahn, F. E.; Han, Y.-F. Angew. Chem., Int. Ed. 2018, 57, 15767.
      (d) Sun, L.-Y.; Sinha, N.; Yan, T.; Wang, Y.-S.; Tan, T. T. Y.; Yu, L.; Han, Y.-F.; Hahn, F. E. Angew. Chem., Int. Ed. 2018, 57, 5161.
      (e) Gan, M.-M.; Liu, J.-Q.; Zhang, L.; Wang, Y.-Y.; Hahn, F. E.; Han, Y.-F. Chem. Rev. 2018, 118, 9587.

    13. [13]

      Cook, T. R.; Zheng, Y. R.; Stang, P. J. Chem. Rev. 2013, 113, 734.  doi: 10.1021/cr3002824

    14. [14]

      Granzhan, A.; Riis-johannessen, T.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2010, 49, 5515.  doi: 10.1002/anie.201002748

    15. [15]

      Forgan, R. S.; Sauvage, J. P.; Stoddart, F. J. Chem. Rev. 2011, 111, 5434.  doi: 10.1021/cr200034u

    16. [16]

      Fujita, M.; Yazaki, J.; Ogura, K. J. Am. Chem. Soc. 1990, 112, 5645.  doi: 10.1021/ja00170a042

    17. [17]

      Stang, P. J.; Cao, D.-H. J. Am. Chem. Soc. 1994, 116, 4981.  doi: 10.1021/ja00090a051

    18. [18]

      Klausmeyer, K. K.; Rauchfuss, T. B.; Wilson, S. R. Angew. Chem., Int. Ed. 1998, 37, 1694.  doi: 10.1002/(SICI)1521-3773(19980703)37:12<1694::AID-ANIE1694>3.0.CO;2-0

    19. [19]

      Severin, K. Chem. Commun. 2006, 3859.

    20. [20]

      Han, Y.-F.; Jin, G.-X. Chem. Soc. Rev. 2014, 43, 2799.  doi: 10.1039/C3CS60343A

    21. [21]

      Karkas, M. D.; Verho, O.; Johnston, E. V.; Akermark, B. Chem. Rev. 2014, 114, 11863.  doi: 10.1021/cr400572f

    22. [22]

      Yao, Z.-J.; Li, K.; Li, P.; Deng, W. J. Organomet. Chem. 2017, 846, 208.  doi: 10.1016/j.jorganchem.2017.06.023

    23. [23]

      Thomsen, J. M.; Huang, D. L.; Crabtree, R. H.; Brudvig, G. W. Dalton Trans. 2015, 44, 12452.  doi: 10.1039/C5DT00863H

    24. [24]

      Han, Y.-F.; Jia, W.-G.; Yu, W.-B.; Jin, G.-X. Chem. Soc. Rev. 2009, 38, 3419.  doi: 10.1039/b901649j

    25. [25]

      Han, Y.-F.; Jin, G.-X. Acc. Chem. Res. 2014, 47, 3571.  doi: 10.1021/ar500335a

    26. [26]

      Zhang, Y.-Y.; Gao, W.-X.; Lin, L.; Jin, G.-X. Coord. Chem. Rev. 2017, 344, 323.  doi: 10.1016/j.ccr.2016.09.010

    27. [27]

      Han, Y.-F.; Lin, Y.-J.; Jia, W.-G.; Weng, L.-H.; Jin, G.-X. Organometallics 2007, 26, 5848.  doi: 10.1021/om700691u

    28. [28]

      (a) Zhang, W.-Z.; Han, Y.-F.; Lin, Y.-J.; Jin, G.-X. Organometallics 2010, 29, 2842.
      (b) Gou, X.-X.; Peng, J.-X.; Das, R.; Wang, Y.-Y.; Han, Y.-F. Dalton Trans. 2019, 48, 7236.
      (c) Zhang, W.-Y.; Lin, Y.-J.; Han, Y.-F.; Jin, G.-X. J. Am. Chem. Soc. 2016, 138, 10700.

    29. [29]

      Han, Y.-F.; Jia, W.-G.; Lin, Y.-J.; Jin, G.-X. Angew. Chem., Int. Ed. 2009, 48, 6234.  doi: 10.1002/anie.200805949

    30. [30]

      Han, Y.-F.; Fei, Y.; Jin, G.-X. Dalton Trans. 2010, 39, 3976.  doi: 10.1039/b925098k

    31. [31]

      Han, Y.-F.; Lin, Y.-J.; Jin, G.-X. Dalton Trans. 2011, 40, 10370.  doi: 10.1039/c1dt10506j

    32. [32]

      Lin, Y.-J.; Han, Y.-F.; Jin, G.-X. J. Organomet. Chem. 2012, 708, 31.

    33. [33]

      Zhang, H.-N.; Gao, W.-X.; Deng, Y.-X.; Lin, Y.-J.; Jin, G.-X. Chem. Commun. 2018, 54, 1559.  doi: 10.1039/C7CC09448E

    34. [34]

      Bergamo, A.; Gaiddon, C.; Schellens, J. H. M.; Beijnen, J. H.; Sava, G. J. Inorg. Biochem. 2012, 106, 90.  doi: 10.1016/j.jinorgbio.2011.09.030

    35. [35]

      Rademaker-lakhai, J. M.; Van den Bongard, D.; Pluim, D.; Beijnen, J. H.; Schellens, J. H. M. Clin. Cancer Res. 2004, 10, 3717.  doi: 10.1158/1078-0432.CCR-03-0746

    36. [36]

      Mari, C.; Pierroz, V.; Ferrari, S.; Gasser, G. Chem. Sci. 2015, 46, 2660.

    37. [37]

      Schmitt, F.; Govindaswamy, P.; Suss-Fink, G.; Ang, W. H.; Dyson, P. J.; Juillerat-Jeanneret, L.; Therrien, B. J. Med. Chem. 2008, 51, 1811.  doi: 10.1021/jm701382p

    38. [38]

      Mannancherril, V.; Therrien, B. Inorg. Chem. 2018, 57, 3626.  doi: 10.1021/acs.inorgchem.7b02668

    39. [39]

      Mattsson, J.; Govindaswamy, P.; Renfrew, A. K.; Dyson, P. J.; Štěpnička, P.; Süss-Fink, G.; Therrien, B. Organometallics 2009, 28, 4350.  doi: 10.1021/om900359j

    40. [40]

      Gupta, G.; Murray, B. S.; Dyson, P. J.; Therrien, B. Materials 2013, 6, 5352.  doi: 10.3390/ma6115352

    41. [41]

      Liu, J.-J.; Lin, Y.-J.; Jin, G.-X. Organometallics 2014, 33, 1283.  doi: 10.1021/om500093p

    42. [42]

      Singh, N.; Jang, S.; Jo, J. H.; Kim, D. H.; Park, D. Y.; Kim, I.; Kim, H.; Kang, S. C.; Chi, K. W. Chem.-Eur. J. 2016, 22, 16157.  doi: 10.1002/chem.201603521

    43. [43]

      Gupta, G.; Das, A.; Ghate, N. B.; Kim, T. H.; Ryu, J. Y.; Lee, J.; Mandal, N.; Lee, C. Y. Chem. Commun. 2016, 52, 4274.  doi: 10.1039/C6CC00046K

    44. [44]

      Gupta, G.; Das, A.; Panja, S.; Ryu, J. Y.; Lee, J.; Mandal, N.; Lee, C. Y. Chem.-Eur. J. 2017. 23, 17199.  doi: 10.1002/chem.201704368

    45. [45]

      Wu, T.; Weng, L.-H.; Jin, G.-X. Chem. Commun. 2012, 48, 4435.  doi: 10.1039/c2cc30630a

    46. [46]

      Guo, B.-B.; Gao, W.-X.; Lin, Y.-J.; Jin, G.-X. Dalton Trans. 2018, 47, 7701.  doi: 10.1039/C8DT01140K

    47. [47]

      Han, Y.-F.; Lin, Y.-J.; Jia, W.-G.; Jin, G.-X. Dalton Trans. 2009, 2077.

    48. [48]

      Han, Y.-F.; Li, H.; Zheng, Z.-F.; Jin, G.-X. Chem.-Asian J. 2012, 7, 1243.  doi: 10.1002/asia.201100999

    49. [49]

      Han, Y.-F.; Jin, G.-X. Chem.-Asian J. 2011, 6, 1348.  doi: 10.1002/asia.201100080

    50. [50]

      Han, Y.-F.; Lin, Y.-J.; Hor, T. S. A.; Jin, G.-X. Organometallics 2012, 31, 995.  doi: 10.1021/om201074k

    51. [51]

      Therrien, B.; Suss-fink, G.; Govindaswamy, P.; Renfrew, A. K.; Dyson, P. J. Angew. Chem., Int. Ed. 2008, 47, 3773.  doi: 10.1002/anie.200800186

    52. [52]

      Yi, J. W.; Barry, N. P. E.; Furrer, M. A.; Zava, O.; Dyson, P. J.; Therrien, B.; Kim, B. H. Bioconjugate Chem. 2012, 23, 461.  doi: 10.1021/bc200472n

    53. [53]

      Furrer, M. A.; Schmitt, F.; Wiederkehr, M.; Juillerat-Jeanneret, L.; Therrien, B. Dalton Trans. 2012, 41, 7201.  doi: 10.1039/c2dt30193h

    54. [54]

      Pitto-barry, A.; Barry, N. P. E.; Zava, O.; Deschenaux, R.; Dyson, P. J.; Therrien, B. Chem.-Eur. J. 2011, 17, 1966.  doi: 10.1002/chem.201002634

    55. [55]

      Therrien, B. CrystEngComm 2015, 17, 484.  doi: 10.1039/C4CE02146K

    56. [56]

      Pitto-barry, A.; Zava, O.; Dyson, P. J.; Deschenaux, R.; Therrien, B. Inorg. Chem. 2012, 51, 7119.  doi: 10.1021/ic202739d

    57. [57]

      Chen, J.; Qiu, X.; Ouyang, J.; Kong, J.; Zhong, W.; Xing, M. Biomacromolecules 2014, 12, 3601.

    58. [58]

      Minghui, Y.; Fritz, W.; Biprajit, S.; Amine, G.; Pierre, B.; Lucie, R.; Bruno, T. Organometallics 2014, 33, 5043.  doi: 10.1021/om500155y

    59. [59]

      Singh, J.; Park, D. W.; Kim, D. H.; Singh, N.; Kang, S. C.; Chi, K. W. ACS Omega 2019, 4, 10810.  doi: 10.1021/acsomega.9b00093

    60. [60]

      Vajpayee, V.; Lee, S.; Kang, S. C.; Cook, T. R.; Kim, H.; Kim, D. W.; Verma, S.; Lah, M. S.; Kim, I. S.; Wang, M.; Stang, P. J.; Chi, K. W. Dalton Trans. 2013, 42, 466.  doi: 10.1039/C2DT31014G

    61. [61]

      Vajpayee, V.; Yang, Y. J.; Kang, S. C.; Kim, C.; Kim, I. S.; Wang, M.; Stang, P. J.; Chi, K. W. Chem. Commun. 2011, 47, 5184.  doi: 10.1039/c1cc10167f

    62. [62]

      Wang, M.; Vajpayee, V.; Shanmugaraju, S.; Zheng, Y. R.; Zhao, Z. G.; Kim, H.; Mukherjee, P. S.; Chi, K. W.; Stang, P. J. Inorg. Chem. 2011, 50, 1506.  doi: 10.1021/ic1020719

    63. [63]

      Vajpayee, V.; Song, Y. H.; Cook, T. R.; Kim, H.; Lee, Y.; Stang, P. J.; Chi, K. W. J. Am. Chem. Soc. 2011, 133, 19646.  doi: 10.1021/ja208495u

    64. [64]

      Vajpayee, V.; Song, Y.-H.; Jung, Y.-J.; Kang, S.-C.; Kim, H.; Kim, I. S.; Wang, M.; Cook, T. R.; Stang, P. J.; Chi, K. W. Dalton Trans. 2012, 41, 3046.  doi: 10.1039/c2dt11811d

    65. [65]

      Vajpayee, V.; Lee, S.; Park, J. W.; Dubey, A.; Kim, H.; Cook, T. R.; Stang, P. J.; Chi, K. W. Organometallics 2013, 32, 1563.  doi: 10.1021/om301174s

    66. [66]

      Singh, N.; Jo, J. H.; Song, Y. H.; Kim, H.; Kim, D.; Lah, M. S.; Chi, K. W. Chem. Commun. 2015, 51, 4492.  doi: 10.1039/C4CC09494H

    67. [67]

      Han, Y.-F.; Lin, Y.-J.; Weng, L.-H.; Berke, H.; Jin, G.-X. Chem. Commun. 2008, 350.

    68. [68]

      Barry, N. P. E.; Austeri, M.; Lacour, J.; Therrien, B. Organometallics 2009, 28, 4894.  doi: 10.1021/om900461s

    69. [69]

      Barry, N. P. E.; Zava, O.; Dyson, P. J.; Therrien, B. Aust. J. Chem. 2010, 63, 1529.  doi: 10.1071/CH10221

    70. [70]

      Oldacre, A. N.; Friedman, A. E.; Cook, T. R. J. Am. Chem. Soc. 2017, 139, 1424.  doi: 10.1021/jacs.6b12404

    71. [71]

      Ryu, J. Y.; Park, Y. J.; Park, H. R.; Saha, M. L.; Stang, P. J.; Lee, J. J. Am. Chem. Soc. 2015, 137, 13018.  doi: 10.1021/jacs.5b07625

    72. [72]

      Ryu, J. Y.; Wi, E. H.; Pait, M.; Lee, S.; Stang, P. J.; Lee, J. Inorg. Chem. 2017, 56, 5471.  doi: 10.1021/acs.inorgchem.7b00556

    73. [73]

      Singh, N.; Singh, J.; Kim, D.; Kim, D. H.; Kim, E. H.; Lah, M. S.; Chi, K. W. Inorg. Chem. 2018, 57, 3521.  doi: 10.1021/acs.inorgchem.7b02653

    74. [74]

      Huang, S.-L.; Hor, T. S. A.; Jin, G.-X. Coord. Chem. Rev. 2017, 333, 1.  doi: 10.1016/j.ccr.2016.11.009

    75. [75]

      Ayme, J. F.; Beves, J. E.; Leigh, D. A.; McBuney, R. T.; Rissanen, K.; Schultz, D. Nat. Chem. 2012, 4, 15.  doi: 10.1038/nchem.1193

    76. [76]

      Thorp-greenwood, F. L.; Kulak, A. N.; Hardie, M. J. Nat. Chem. 2015, 7, 526.  doi: 10.1038/nchem.2259

    77. [77]

      Mcconnell, A. J.; Wood, C. S.; Neelakandan, P. P.; Nitschke, J. R. Chem. Rev. 2015, 115, 7729.  doi: 10.1021/cr500632f

    78. [78]

      Smulders, M. M. J.; Riddell, I. A.; Browne, C.; Nitschke, J. R. Chem. Soc. Rev. 2013, 42, 1728.  doi: 10.1039/C2CS35254K

    79. [79]

      Wang, W.; Wang, Y.-X.; Yang, H.-B. Chem. Soc. Rev. 2016, 45, 2656.  doi: 10.1039/C5CS00301F

    80. [80]

      Lu, Y.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. Chin. J. Chem. 2018, 36, 106.  doi: 10.1002/cjoc.201700590

    81. [81]

      Huang, S.-L.; Lin, Y.-J.; Hor, T. S. A.; Jin, G.-X. J. Am. Chem. Soc. 2013, 135, 8125.  doi: 10.1021/ja402630g

    82. [82]

      Huang, S.-L.; Lin, Y.-J.; Lin, Z.-H.; Jin, G.-X. Angew. Chem., Int. Ed. 2014, 53, 11218.  doi: 10.1002/anie.201406193

    83. [83]

      Lu, Y.; Deng, Y.-X.; Lin, Y.-J.; Han, Y.-F.; Weng, L.-H.; Lin, Z.-H.; Jin, G.-X. Chem 2017, 3, 110.  doi: 10.1016/j.chempr.2017.06.006

    84. [84]

      Zhang, L.; Lin, L.; Liu, D.; Lin, Y.-J.; Lin, Z.-H.; Jin, G.-X. J. Am. Chem. Soc. 2017, 139, 1653.  doi: 10.1021/jacs.6b11968

    85. [85]

      Lu, Y.; Zhang, H.-N.; Jin, G.-X. Acc. Chem. Res. 2018, 51, 2148.  doi: 10.1021/acs.accounts.8b00220

    86. [86]

      Kim, T.; Singh, N.; Oh, J.; Kim, E. H.; Jung, J.; Kim, H.; Chi, K. W. J. Am. Chem. Soc. 2016, 138, 8368.  doi: 10.1021/jacs.6b04545

    87. [87]

      Singh, N.; Kim, D.; Kim, D. H.; Kim, E. H.; Kim, H.; Lah, M. S.; Chi, K. W. Dalton Trans. 2017, 46, 571.  doi: 10.1039/C6DT04512J

    88. [88]

      Song, Y.-H.; Singh, N.; Jung, J.; Kim, H.; Kim, E. H.; Cheong, H. K.; Kim, Y. Angew. Chem., Int. Ed. 2016, 55, 2007.  doi: 10.1002/anie.201508257

    89. [89]

      Mishra, A.; Dubey, A.; Min, J. W.; Kim, H.; Stang, P. J.; Chi, K. W. Chem. Commun. 2014, 50, 7542.  doi: 10.1039/C4CC01991A

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    7. [7]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    19. [19]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(21)
  • Abstract views(4200)
  • HTML views(849)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return