Citation: Chen Qianwen, Yang Yaocheng, Wang Xia, Zhang Qian, Li Dong. Hypervalent Iodine Reagent-Mediated C(5) C-H Nucleophilic Fluorination of 8-Aminoqunolines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 454-461. doi: 10.6023/cjoc201907046 shu

Hypervalent Iodine Reagent-Mediated C(5) C-H Nucleophilic Fluorination of 8-Aminoqunolines

  • Corresponding author: Li Dong, dongli@mail.hbut.edu.cn
  • Received Date: 28 July 2019
    Revised Date: 19 September 2019
    Available Online: 12 February 2019

    Fund Project: the Innovation and Entrepreneurship Training Program No.201610500005Project supported by the National Natural Science Foundation of China No. 21702054Project supported by the National Natural Science Foundation of China (No. 21702054) and the Innovation and Entrepreneurship Training Program (No.201610500005)

Figures(4)

  • The C(5) C-H fluorination of 8-aminoqunolines has attracted much attention recently. However, transition-metal catalyst and electrophilic fluorination reagents were required in most of these reactions. Transition-metal catalyst free C(5) C-H nucleophilic fluorination of 8-aminoqunolines was reviewed. This reaction was mediated by a hypervalent iodine reagent and employed cheap, safe and stable silver fluoride as the nucleophilic fluorination reagent. The reaction proceeded without inert gas protection. It possess the merits of simple and mild reaction conditions, easy operation, high regioselectivity and wide substrate scope and provides a novel method for fluorination of quinolines with potential application value.
  • 加载中
    1. [1]

      (a) Colomb, J.; Becker, G.; Fieux, S.; Zimmer, L.; Billard, T. J. Med. Chem. 2014, 57, 3884. (b) Vandekerckhove, S.; Tran, H. G.; Desmet, T.; D'hooghe, M. Bioorg. Med. Chem. Lett. 2013, 23, 4641. (c) Jiang, H.; Taggart, J. E.; Zhang, X. H. G.; Benbrook, D. M.; Lind, S. E.; Ding, W. Q. Cancer Lett. 2011, 312, 11. (d) Solomon, V. R.; Lee, H. Curr. Med. Chem. 2011, 18, 1488. (e) Tokoro, Y.; Nagai, A.; Kokado, K.; Chujo, Y. Macromolecules 2009, 42, 2988. (f) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166. (g) Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications, 3rd ed., John Wiley & Sons, New York, 2013. (h) Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K. Comprehensive Heterocyclic Chemistry III, Elsevier, Oxford, 2008.

    2. [2]

      (a) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726. (b) Corbet, M.; De Campo, F. Angew. Chem., Int. Ed. 2013, 52, 9896. (c) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107. (d) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053. (e) Yadav, M. R.; Rit, R. K.; Shankar, M.; Sahoo, A. K. Asian J. Org. Chem. 2015, 4, 846. (f) Liu, J.; Chen, G.; Tan, Z. Adv. Synth. Catal. 2016, 358, 1174. (g) Rit, R. K.; Yadav, M. R.; Ghosh, K.; Sahoo, A. K. Tetrahedron 2015, 71, 4450. (h) Zhang, B.; Guan, H.; Liu, B.; Shi, B. Chin. J. Org. Chem. 2014, 34, 1487 (in Chinese).(i) Zhang, W.; Zhang, J.; Liu, Y. Chin. J. Org. Chem. 2014, 34, 36 (in Chinese).(j) Dou, Y.; Gu, X.; Jiang, J.; Zhu, Q. Prog. Chem. 2018, 30, 1317 (in Chinese).

    3. [3]

      (a) Roger, J.; Gottumukkala, A. L.; Doucet, H. ChemCatChem 2010, 2, 20. (b) Iwai, T.; Sawamura, M. ACS Catal. 2015, 5, 5031. (c) Stephens, D. E.; Larionov, O. V. Tetrahedron 2015, 71, 8683.

    4. [4]

      Suess A. M., Ertem M. Z., Cramer C. J., Stahl S. S. J...Am. Chem. Soc., 2013, 135:9797.  doi: 10.1021/ja4026424

    5. [5]

      (a) Zhu, L.; Cao, X.; Li, Y.; Liu, T.; Wang, X.; Qiu, R.; Yin, S.-F. Chin. J. Org. Chem. 2017, 37, 1613 (in Chinese).(b) Khan, B.; Dutta, H. S.; Koley, D. Asian J. Org. Chem. 2018, 7, 1270.

    6. [6]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (c) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305. (d) Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J. Chem. Soc. Rev. 2011, 40, 3496. (e) Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501. (f) Walker, M. C.; Chang, M. C. Y. Chem. Soc. Rev. 2014, 43, 6527. (g) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441. (h) Qing, F. L.; Qiu, X. L. Organofluorine Chemistry, Science Press, Beijing, 2007 (in Chinese).(i) Kirsch, P. Modern Fluoroorganic Chemistry, Wiley-VCH Verlag GmbH. & KGaA., Weinheim, 2013.

    7. [7]

      (a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. (b) Jin, Z.; Hammond, G. B.; Xu, B. Aldrichim. Acta 2012, 45, 67. (c) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (d) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612. (e) Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Chem. Rev. 2015, 115, 9073. (f) Lin, A.; Huehls, C. B.; Yang, J. Org. Chem. Front. 2014, 1, 434. (g) Ma, J.-A.; Li, S. Org. Chem. Front. 2014, 1, 712. (h) Li, Y.; Wu, Y.; Li, G.-S.; Wang X.-S. Adv. Synth. Catal. 2014, 356, 1412. (i) He, J.; Lou, S.; Xu, D. Chin. J. Org. Chem. 2016, 36, 1218 (in Chinese).

    8. [8]

      (a) Ding, J.; Zhang, Y.; Li, J. Org. Chem. Front. 2017, 4, 1528. (b) Luo, S.-S.; Su, L.-J.; Jiang, Y.; Li, X.-B.; Li, Z.-H.; Sun, H.; Liu, J.-K. Synlett 2018, 29, 1525.

    9. [9]

      (a) Zhang, Y.; Wen, C.; Li, J. Org. Biomol. Chem. 2018, 16, 1912. (b) Chen, H.; Li, P.; Wang, M.; Wang, L. Eur. J. Org. Chem. 2018, 2091.

    10. [10]

      (a) Differding, E.; Ofner, H. Synlett 1991, 187. (b) Banks, R. E. J. Fluorine Chem. 1998, 87, 1.

    11. [11]

      (a) Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48, 2929. (b) Ni, C.; Jiang, F.; Zeng, Y.; Hu, J. J. Fluorine Chem. 2015, 179, 3. (c) Zeng, Y.; Hu, J. Rep. Org. Chem. 2015, 5, 19.

    12. [12]

      Wang Y., Wang Y., Jiang K., Zhang Q., Li D...Org. Biomol. Chem., 2016, 14: 10180.

    13. [13]

      (a) Sen, C.; Sahoo, T.; Ghosh, S. C. ChemistrySelect 2017, 2, 2745. (b) Jiao, J.-Y.; Mao, Y.-J.; Feng, A.-W.; Li, X.-F.; Li, M.-T.; Zhang, X.-H. Tetrahedron 2017, 73, 1482. (c) Chen, X.-X.; Wang, J.-X.; Ren, J.-T.; Xie, H.; Zhao, Y.; Li, Y.-M.; Sun, M. Synlett 2017, 28, 1840. (d) Qiao, L.; Cao, X.; Chai, K.; Shen, J.; Xu, J.; Zhang, P. Tetrahedron Lett. 2018, 59, 2243.

    14. [14]

      (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523. (b) Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656. (c) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299. (d) Yusubov, M. S.; Zhdankin, V. V. Curr. Org. Synth. 2012, 9, 247. (e) Brown, M.; Farid, U.; Wirth, T. Synlett 2013, 424. (f) Zhdankin, V. V. Hypervalent Iodine Chemistry, John Wiley & Sons Ltd., New York, 2014. (g) Kita, Y.; Dohi, T. Chem. Rec. 2015, 15, 886. (h) Narayan, R.; Manna, S.; Antonchick, A. P. Synlett 2015, 26, 1785. (i) Mu iz, K. Top. Curr. Chem. 2016, 373, 105. (j) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328. (k) Zhang, X.; Cong, Y.; Lin, G.; Guo, X.; Cao, Y.; Lei, K.; Du, Y. Chin. J. Org. Chem. 2016, 36, 2513 (in Chinese). (l) Budhwan, R.; Yadav, S.; Murarka, S. Org. Biomol. Chem.2019, 17, 6326.

    15. [15]

      Duan Y., Jiang S., Han Y., Sun B., Zhang C...Chin. J. Org. Chem., 2016, 36:1973(in Chinese).

    16. [16]

      Tian T., Zhong W., Meng S., Meng X., Li Z. J...Org. Chem., 2013, 78:728.  doi: 10.1021/jo302099d

    17. [17]

      (a) Wang, Y.; Wang, Y.; Guo, Z.; Zhang, Q.; Li, D. Asian J. Org. Chem. 2016, 5, 1438. (b) Wang, Y.; Wang, Y.; Zhang, Q.; Li, D. Org. Chem. Front. 2017, 4, 514.

    18. [18]

      (a) Huang, P.-Q. Acta Chim. Sinica 2018, 76, 357 (in Chinese).(b) Huang, Y.-H.; Wang, S.-R.; Wu, D.-P.; Huang, P.-Q. Org. Lett. 2019, 21, 1681. (c) Zheng, W.; Yang, W.; Luo, D.; Min, L.; Wang, X.; Hu, Y. Adv. Synth. Catal. 2019, 361, 1995. (d) Li, L.-H.; Niu, Z.-J.; Liang, Y.-M. Chem.-Eur. J. 2017, 23, 15300. (e) Ye, J.-L.; Zhu, Y.-N.; Geng, H.; Huang, P.-Q. Sci. China, Chem. 2018, 61, 687. (f) Gao, Y.-J.; Xiao, Z.-H.; Liu, L.-X.; Huang, P.-Q. Chin. J. Org. Chem. 2017, 37, 1189 (in Chinese).

  • 加载中
    1. [1]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    6. [6]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    7. [7]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    8. [8]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    9. [9]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    10. [10]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    11. [11]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    12. [12]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    13. [13]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    14. [14]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    17. [17]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

Metrics
  • PDF Downloads(15)
  • Abstract views(2819)
  • HTML views(435)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return