Citation: Ma Xiantao, Zhou Kunjie, Ren Mengjuan, Wang Mengyu, Yu Jing. Steric Hindrance Effect Leading to Regioselective Bromination of Phenols with HBr[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2796-2801. doi: 10.6023/cjoc201907038 shu

Steric Hindrance Effect Leading to Regioselective Bromination of Phenols with HBr

  • Corresponding author: Ma Xiantao, xiantaoma@126.com
  • Received Date: 26 July 2019
    Revised Date: 22 August 2019
    Available Online: 5 October 2019

    Fund Project: Project supported by the Key Scientific and Technological Project of Henan Province (No. 192102310031), the Scientific Research Project of Henan Province (No. 19B150018), the Nanhu Scholars Program for Young Scholars of Xinyang Normal University and the Young Core Instructor Program of Xinyang Normal University (No. 2018GGJS-05)the Key Scientific and Technological Project of Henan Province 192102310031the Young Core Instructor Program of Xinyang Normal University 2018GGJS-05the Scientific Research Project of Henan Province 19B150018

Figures(2)

  • A mild and regioselective bromination of phenols with the cheap and easily-available HBr is developed. By replacing the common used dimethyl sulfoxide (DMSO) with sulfoxides bearing sterically hindered substituents, the desired brominated phenols could be obtained in moderate to high yields with up to 99/1 regioselectivity. This method could be easily scaled up to 50 mmol scale and has the potential to isolate the desired product by simple extraction and recrystallization, showing great practicality of this new method.
  • Bromated phenols are important synthetic intermediates of some natural products and biologically active compounds.[1] While the toxic and corrosive molecular bromine was frequently used in bromination of phenols via electrophilic aromatic substitution (EAS), despite the drawbacks of low regioselectivity and poor functional group tolerance.[2] Then N-bromosuccinimide (NBS) and the analogues were developed as more preferable alternatives and widely used in organic synthesis, however, these brominating reagents are usually expensive.[3]

    Inspired by the enzyme-catalyzed oxidative halogenation in nature, [4] the slow release of brominating reagent by oxidation of bromide has recently received much attention.[5] HBr is the byproduct of Br2-based bromination in ton scale every year, which is readily available, inexpensive, easy to store and handle.[6] therefore, it would be worthwhile to develop practical methods to utilize HBr efficiently. The combination of HBr with an oxidant such as selectfluor, persulfates, hypervalent iodine, H2O2, air and dimethyl sulfoxide (DMSO), was then developed for oxidative bromination.[5a, 5b, 7] However, the use of selectfluor, persulfates, or hypervalent iodine as the oxidant has obvious drawbacks of expensive price and/or generation of many wastes, while the reaction with the greener H2O2 or air generally required metal catalysts and/or harsh reaction conditions. In contrast, using the cheap and easily available DMSO seems much attractive, due to the advantages of safety, high atom economy, mild and metal-free conditions.

    In 2015, Jiao and coworkers[8] found that the use of stoichiometric DMSO as the oxidant instead of the solvent can greatly improve the reaction efficiency and selectivity, leading to an efficient and practical halogenation of arenes. However, owing to the negligibly electronic differences between para- and ortho-position of phenols, obtaining high selectivity at para-position of phenols remains challenging at present.[9] Therefore, it is still highly desired to develop a mild, regioselective and waster-free bromination of phenols.

    With our continuous interest in regioselective halogenation, [10] we recently observed an unexpected steric hindrance effect from byproduct leading to a mild and regioselective bromination of phenols with TMSBr.[10b] However, the use of the expensive and water-sensitive TMSBr narrowed the wide applications of this new method. Herein, we wish to report a mild, efficient and regioselective bromination of phenols with the cheap and easily-available HBr, and by replacing the common used DMSO with sulfoxides bearing sterically hindered substituents. The desired brominated phenols could be obtained in high selectivity (p/o up to 99/1). Notably, this new method could be easily scaled up to 50 mmol scale without reduction in reaction selectivity and has the potential to isolate the desired product and recycle the byproduct thioether by simple extraction and recrystallization. Moreover, water is the sole byproduct, making the method much greener and practical.

    The mixture of phenol (1a) and HBr was initially stirred in a solvent of DMSO at 25 ℃, and the target 3a could be obtained in 25% yield with a poor selectivity of 65/35 (3a/4a) (Table 1, Entry 1).[11] The reaction at 40 ℃ gave target 3a in 55% yield with p/o selectivity of 72/28 (Entry 2). To our delight, using stoichiometric DMSO as the oxidant greatly promoted the reaction, affording the target 3a in a much higher yield (80%) with a higher selectivity of 89/11 (Entry 3).[12] Inspired by our previous regioselective bromination of phenols with TMSBr, [10b] various sulfoxide surrogates such as di-butyl-, di-benzyl-, di-phenyl-, di-4-tolyl- and di-4-chlorphenyl-sulfoxide were then screened to further improve the reaction selectivity (Entries 4~8). As shown in Table 1, the reaction with sulfoxide surrogate bearing sterically hindered group, generally gave target 3a in high selectivity (Entries 3~8).[13] The reaction with di-benzyl sulfoxide gave target 3a in 82% yield with the highest selectivity (98/2) (Entry 5), while the reaction with di-4-chlorphenyl sulfoxide gave target 3a in 91% yield with a comparable selectivity (97/3) (Entry 8). Therefore, di-4-chlorphenyl sulfoxide was chosen as the best sulfoxide surrogate. The reaction solvents were finally screened to further improve the reaction yield, but no better results were obtained (Entries 9~11).

    Table 1

    Table 1.  Conditions screening for regioselective bromination of phenol with HBra
    下载: 导出CSV
    Entry R (2) Solvent 3ab/% 3a/4ac
    1d Me (2a) DMSO 25 61/39
    2 Me (2a) DMSO 55 69/31
    3 Me (2a) MeCN 80 89/11
    4 n-Bu (2b) MeCN 75 93/7
    5 Bn (2c) MeCN 82 98/2
    6 Ph (2d) MeCN 86 95/5
    7 4-MeC6H4 (2e) MeCN 87 96/4
    8 4-ClC6H4 (2f) MeCN 91 97/3
    9 4-ClC6H4 (2f) EtOAc 84 94/6
    10 4-ClC6H4 (2f) DMF 0
    11 4-ClC6H4 (2f) CHCl3 41 62/38
    a Unless otherwise noted, a mixture of 1a (0.50 mmol), HBr (0.525 mmol), sulfoxide 2 (0.50 mmol) and a solvent (2.0 mL) was directly sealed under air in a Schlenk tube, and stirred at 40 ℃ for 12 h, then monitored by thin-layer chromatography (TLC) and/or GC-MS. b Isolated yield based on 1a. c Determined by GC-MS. d 25 ℃.

    With the optimized conditions (Table 1, Entry 8) in hand, various phenols were then tested to extend the scope of the method. As shown in Table 2, like the model reaction, both electron-rich and electron-deficient phenols and even naphthols reacted effectively with HBr, affording the desired products 3a~3m in moderate to high yields (Table 2, Entries 1~14). A series of functional groups such as reactive methoxyl, fluoro, chloro, bromo, aldehyde, and ester groups could be tolerated by this method (Entries 3~8). The reactions of ortho- or meta-substituted of phenols sucessfully gave para-brominated products with high selectivity (Entries 2~10). As to para-substituted phenols, ortho-brominated products were obtained in good yields with high selectivity (Entries 11~13). The method can also be extended to oxidative chlorination with concentrated HCl, but the chlorinated product was obtained with poor p/o selectivity (Entry 15). Unfortunately, the method is not suitable for the synthesis of para-iodinated phenols (Entry 16). Then the method was extended to other electron-rich arenes such as anisole and anilines. To our delight, the target para-brominated products were obtained in moderate to high yields with high selectivity (Entries 17~19).

    Table 2

    Table 2.  Regioselective bromination of phenols with HBra
    下载: 导出CSV

    The potential of this new method in large scale synthesis was also investigated. As shown in Scheme 1, the model reaction of phenol (1a) with HBr could be easily scaled up in 50 mmol scale, affording the desired product 3a in 84% isolated yield (7.23 g) only by extraction and recrystallization. Moreover, the byproduct 5f could be recycled by only extraction, and then be readily oxidized into sulfoxide 2f with H2O2, [13] with a totally > 80% recovery.[12] These experimental results showed great practicality of this new method.

    Scheme 1

    Scheme 1.  50 mmol of scale synthesis of 3a

    According to our experimental results and the literature reports, [8, 10b, 14] the possible reaction mechanism for this regioselective bromination of phenols is depicted in Scheme 2. HBr is initially oxidized by sulfoxide 2 to R2S•Br2.[8] Then a EAS bromination of phenols leads to the target product 3, meanwhile liberating a molecule of HBr which could be reoxidized by sulfoxide 2 for the next oxidative cycle. Possibly owing to the steric hindrance effect of R group of intermediate 7, the electrophilic bromination at the para-position of phenols is much favorable.[10b]

    Scheme 2

    Scheme 2.  Possible reaction mechanism

    A practical and regioselective bromination of phenols with the cheap and easily-available HBr was developed. The desired brominated phenols could be obtained with high regioselectivity by replacing the common used DMSO with a sulfoxide bearing sterically hindered substituents. A series of functional groups such as the reactive methoxyl, fluoro, chloro, bromo, aldehyde and ester groups can be tolerated by this method. Moreover, this method could be easily scaled up to 50 mmol and has the potential to isolate the desired product and recycle the byproduct thioether by simple extraction and recry- stallization, showing great practicality of this new method. Further application of this novel method for the regio- selective functionalization of phenols is under way.

    1H NMR and 13C NMR spectra were recorded on a JNM-ECZ600R/S3 (Jeol, Japan) (600 MHz and 150 MHz, respectively) using tetramethylsilane as an internal reference. Mass spectra were measured on an Agilent GC-MS-5890A/5975C Plus spectrometer (EI).

    All reactions were conducted in a sealed tube under air atmosphere. All the chemicals were purchased from the Energy, Alfa Aesar, and Tansoole Chemical Reagent Co., and used as received.

    4.2.1   General procedure for regioselective bromi- nation of phenols with HBr

    A mixture of phenol 1a (47.0 mg, 0.50 mmol), HBr (w=33%, in HOAc, 130 mg, 0.525 mmol), di-4-chlo- rphenyl-sulfoxide (135.5 mg, 0.50 mmol) and acetonitrile (2.0 mL) was directly sealed and stirred in a 20 mL tube at 40 ℃ for 12 h. Then the solvent was evaporated and the residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether (V/V=0/100~1/10), to give compound 3a.

    4-Bromophenol (3a): Colorless solid. m.p. 65~66 ℃ (lit.[3d] 66~68 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.42~7.30 (m, 2H), 6.81~6.66 (m, 2H), 4.97 (br s, 1H); 13C NMR (150 MHz, CDCl3) δ: 154.72, 132.56, 117.27, 112.94; MS (EI) m/z: 174, 172, 155, 143, 128, 117, 93, 79, 74, 65.

    4-Bromo-2-methylphenol (3b): Colorless solid. m.p. 62~63 ℃ (lit.[15] 63~65 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.23 (d, J=1.8 Hz, 1H), 7.16 (dd, J=8.4, 2.4 Hz, 1H), 6.64 (d, J=8.4 Hz, 1H), 4.83 (br s, 1H), 2.21 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 153.01, 133.61, 129.82, 126.32, 116.60, 112.61, 15.75; MS (EI) m/z: 188, 186, 168, 141, 117, 107, 89, 77, 63.

    4-Bromo-2-methoxyphenol (3c):[16] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.05~6.88 (m, 2H), 6.79 (d, J=8.4 Hz, 1H), 5.54 (br s, 1H), 3.87 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 147.32, 144.91, 124.23, 115.87, 114.24, 111.68, 56.23; MS (EI) m/z: 204, 202, 189, 187, 161, 159, 145, 143, 133, 131, 117, 108, 94, 79, 63.

    4-Bromo-2-fluorophenol (3d):[17] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.20 (dd, J=9.6, 2.4 Hz, 1H), 7.15~7.07 (m, 1H), 6.87 (t, J=9.0 Hz, 1H), 5.96 (br s, 1H); 13C NMR (150 MHz, CDCl3) δ: 151.00 (d, J=242.6 Hz), 142.67 (d, J=13.6 Hz), 128.05 (d, J=3.7 Hz), 119.22 (d, J=21.4 Hz), 118.74 (s), 111.96 (d, J=8.3 Hz); MS (EI) m/z: 192, 190, 172, 163, 161, 144, 142, 111, 95, 83, 63.

    4-Bromo-2-chlorophenol (3e):[18] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.59 (d, J=2.4 Hz, 1H), 7.32 (dd, J=8.4, 2.4 Hz 1H), 6.90 (d, J=8.4 Hz, 1H), 5.51 (br s, 1H); 13C NMR (150 MHz, CDCl3) δ: 150.75, 131.52, 131.40, 120.89, 117.71, 112.40; MS (EI) m/z: 210, 208, 206, 179, 177, 172, 170, 153, 144, 142, 127, 117, 99, 91, 73, 63.

    2, 4-Dibromophenol (3f):[15] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.59 (d, J=2.4 Hz, 1H), 7.32 (dd, J=8.4, 2.4 Hz, 1H), 6.90 (d, J=8.4 Hz, 1H), 5.51 (br, 1H); 13C NMR (150 MHz, CDCl3) δ: 151.70, 134.13, 132.21, 117.53, 112.73, 110.94; MS (EI) m/z: 252, 251, 223, 197, 173, 143, 117, 92, 74, 63.

    5-Bromo-2-hydroxybenzaldehyde (3g): Colorless solid. m.p. 104~105 ℃ (lit.[19] 102~106 ℃); 1H NMR (600 MHz, CDCl3) δ: 10.93 (br s, 1H), 9.83 (br s, 1H), 7.67 (d, J=2.4 Hz, 1H), 7.59 (dd, J=9.0, 2.4 Hz, 1H), 6.90 (d, J=9.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 195.55, 160.64, 139.81, 135.73, 121.82, 119.91, 111.46; MS (EI) m/z: 202, 200, 184, 182, 173, 171, 145, 143, 117, 107, 92, 77, 63.

    Ethyl 5-bromo-2-hydroxybenzoate (3h):[20] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 10.79 (br s, 1H), 7.95 (d, J=2.4 Hz, 1H), 7.51 (dd, J=9.0, 2.4 Hz, 1H), 6.87 (d, J=9.0 Hz, 1H), 4.40 (q, J=7.2 Hz, 2H), 1.41 (t, J=7.2 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ: 169.21, 160.73, 138.39, 132.26, 119.64, 114.17, 110.82, 62.01, 14.25; MS (EI) m/z: 246, 244, 218, 216, 200, 198, 172, 170, 159, 143, 119, 91, 81, 63.

    4-Bromo-3-methylphenol (3i):[3d] Colorless solid. m.p. 59~60 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.33 (d, J=8.4 Hz, 1H), 6.73 (d, J=3.0 Hz, 1H), 6.54 (dd, J=8.4, 3.0 Hz, 1H), 5.12 (br s, 1H), 2.32 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 154.93, 139.19, 133.09, 117.89, 115.37, 114.59, 23.07; MS (EI) m/z: 188, 186, 168, 141, 117, 107, 89, 77, 63.

    3, 4-Dibromophenol (3j):[21] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.43 (d, J=8.4 Hz, 1H), 7.13 (d, J=3.0 Hz, 1H), 6.67 (dd, J=8.4, 3.0 Hz, 1H), 5.35 (br s, 1H); 13C NMR (150 MHz, CDCl3) δ: 155.41, 134.08, 125.04, 120.82, 116.32, 115.35; MS (EI) m/z: 252, 251, 223, 197, 173, 143, 117, 92, 74, 63.

    2-bromo-4-methylphenol (3k):[22] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.27 (d, J=1.2 Hz, 1H), 7.00 (dd, J=8.4, 1.2 Hz, 1H), 6.91 (d, J=8.4 Hz, 1H), 5.46 (br s, 1H), 2.26 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 150.07, 132.26, 131.54, 129.87, 115.86, 109.92, 20.32; MS (EI) m/z: 188, 186, 168, 141, 117, 107, 89, 77, 63.

    2-Bromo-4-methoxyphenol (3l):[23] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.00 (d, J=3.0 Hz, 1H), 6.93 (d, J=9.0 Hz, 1H), 6.79 (dd, J=9.0, 3.0 Hz, 1H), 5.13 (br s, 1H), 3.74 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 153.85, 146.56, 116.88, 116.42, 115.40, 110.00, 56.06; MS (EI) m/z: 204, 202, 189, 187, 161, 159, 145, 143, 133, 131, 117, 108, 94, 79, 63.

    1-Bromonaphthalen-2-ol (3m): Colorless solid. m.p. 80~81 ℃ (lit.[22] 80~82 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.02 (d, J=8.4 Hz, 1H), 7.78 (d, J=8.4 Hz, 2H), 7.72 (d, J=8.4 Hz, 1H), 7.61~7.52 (m, 1H), 7.41~7.36 (m, 1H), 7.26 (d, J=8.4 Hz, 1H), 5.94 (br s, 1H); 13C NMR (150 MHz, CDCl3) δ: 150.67, 132.37, 129.76, 129.42, 128.31, 127.94, 125.42, 124.23, 117.25, 106.21; MS (EI) m/z: 224, 222, 195, 193, 167, 143, 115, 89, 74, 63.

    1-Bromo-4-methoxybenzene (3o):[22] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.52~7.29 (m, 2H), 6.90~6.66 (m, 2H), 3.77 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 158.78, 132.33, 115.82, 112.89, 55.51; MS (EI) m/z: 188, 186, 173, 171, 145, 143, 129, 117, 107, 92, 77, 63.

    4-Bromoaniline (3q):[22] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.24~7.19 (m, 2H), 6.61~6.48 (m, 2H), 3.65 (br, 2H); 13C NMR (150 MHz, CDCl3) δ: 145.49, 132.10, 116.79, 110.29; MS (EI) m/z: 173, 171, 154, 143, 128, 117, 104, 92, 85, 79, 65, 52.

    4-Bromo-N, N-dimethylaniline (3r):[22] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.32~7.27 (m, 2H), 6.60~6.55 (m, 2H), 2.91 (s, 6H); 13C NMR (150 MHz, CDCl3) δ: 149.57, 131.76, 114.17, 108.57, 40.68; MS (EI) m/z: 201, 200, 199, 198, 185, 184, 183, 182, 168, 155, 141, 128, 118, 104, 91, 77, 63, 51.

    4.2.2   General procedure for large scale synthesis

    To a stirred mixture of phenol (1a) (4.70 g, 50 mmol), di-4-chlorphenyl-sulfoxide (2f) (13.50 g, 50 mmol) and acetonitrile (200 mL), HBr (w=33%, in HOAc, 13.0 g, 52.5 mmol, 1.05 equiv.) was slowly added at room temperature, then the mixture was allowed to stirred at 40 ℃ for 18 h. The solvent was evaporated and the residue was alkalified with 1 mol/L sodium hydroxide solution. The mixture was then extracted with ethyl acetate (100 mL×3) and the organic phases were combined, dried with anhydrous sodium sulfate, filtered and ethyl acetate was evaporated by a rotary evaporator to recover di-4-chlor- phenylsulfoxide (2f) and di-4-chlorphenyl thioether (5f), which were then oxidized to regenerate di-4-chlor-phenyl-sulfoxide (2f) (totally > 80% recovery of 2f). The aqueous phase was then acidized with 1 mol/L HCl to pH=1, then extracted with ethyl acetate (200 mL×3) and the organic phases were combined, dried with anhydrous sodium sulfate, and filtered, and ethyl acetate was evaporated by a rotary evaporator to give the crude 3a (8.05 g, p/o=97/3). Finally, the crude 3a was recrystallized with EtOAc/PE (V:V=10:1) to give the pure product (7.23 g, 84% yield).

    Bis(4-chlorophenyl)sulfane (5f): colorless solid; m.p. 93~94 ℃ (lit.[24] 95~98 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.29~7.21 (m, 8H); 13C NMR (150 MHz, CDCl3) δ: 134.0, 133.6, 132.4, 129.6; MS (EI) m/z: 228, 213, 195, 185, 171, 153, 143, 141, 128, 117, 102, 91, 77, 65.

    Supporting Information Control experiments and copies of 1H NMR and 13C NMR spectra of products. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.


    1. [1]

      Fusetani, N.; Matsunaga, S. Chem. Rev. 1993, 93, 1793.
      (b) Segraves, E. N.; Shah, R. R.; Segraves, N. L.; Johnson, T. A.; Whitman, S.; Sui, J. K.; Kenyon, V. A.; Cichewicz, R. H.; Crews, P.; Holman, T. R. J. Med. Chem. 2004, 47, 4060.
      (c) Akai, S.; Kakiguchi, K.; Nakamura, Y.; Kuriwaki, I.; Dohi, T.; Harada, S.; Kubo, O.; Morita, N.; Kita, Y. Angew. Chem., Int. Ed. 2007, 46, 7458.
      (d) Qian, S.; Ma, Y.; Gao, S.; Luo, J. Chin. J. Org. Chem. 2018, 38, 1930(in Chinese).
      (钱少平, 马尧睿, 高姗姗, 骆钧飞, 有机化学, 2018, 38, 1930.)
      (e) Zhou, P.; Hou, A.; Wang, Y. Chin. J. Org. Chem. 2018, 38, 156(in Chinese).
      (周鹏飞, 侯爱君, 王洋, 有机化学, 2018, 38, 156.)

    2. [2]

      For reviews: see: (a) Smith, K.; El-HitiI, G. A. Curr. Org. Synth. 2004, 1, 253.
      (b) Saikia, A. J.; Borah, P. P. Chem. Rev. 2016, 116, 6837.

    3. [3]

      For a review, see: (a) Luo, J.; Xu, X.; Zhao, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37, 2873(in Chinese).
      (骆钧飞, 徐星, 赵延超, 梁洪泽, 有机化学, 2017, 37, 2873.)
      For selected recent reports, see: (b) Okada, Y.; Yokozawa, M.; Akiba, M.; Oishi, K.; O-kawa, K.; Akeboshi, T.; Kawamura, Y.; Inokuma, S.; Nakamura, Y.; Nishimura, J. Org. Biomol. Chem. 2003, 1, 2506.
      (c) Bovonsombat, P.; Ali, R.; Khan, C.; Leykajarakul, J.; Pla-on, K.; Aphimanchindakul, S.; Pungcharoenpong, N.; Timsuea, N.; Arunrat, A.; Punpongjareorn, N. Tetrahedron 2010, 66, 6928.
      (d) Racys, D. T.; Warrilow, C. E.; Pimlott, S. L.; Sutherland, A. Org. Lett. 2015, 17, 4782.
      (e) Nishimura, J.; Tang, R.-J.; Milcent, T.; Crousse, B. J. Org. Chem. 2018, 83, 930.

    4. [4]

      For a review, see: Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.

    5. [5]

      For reviews, see: (a) Podgoršek, A.; Zupan, M.; Iskra, J. Angew. Chem., Int. Ed. 2009, 48, 8424.
      (b) Zhang, G.; Wang, Y.; Ding, C.; Liu, R.; Liang, X. Chin. J. Org. Chem. 2011, 31, 804(in Chinese).
      (张国富, 王涌, 丁成荣, 刘仁华, 梁鑫淼, 有机化学, 2011, 31, 804.)
      For selected recent reports, see: (c) Werf, A.; Selander, N. Org. Lett. 2015, 17, 6210.
      (d) Satkar, Y.; Ramadoss, V.; Nahide, P. D.; García-Medina, E.; Juárez-Ornelas, K. A.; Alonso-Castro, A. J.; Chávez-Rivera, R.; Jiménez-Halla, J. O. C.; Solorio-Alvarado, C. R. RSC Adv. 2018, 8, 17806.
      (e) Sorabad, G. S.; Maddani, M. R. New J. Chem. 2019, 43, 6563.
      (f) Walter, C.; Fallows, N.; Kesharwani, T. ACS Omega 2019, 4, 6538.
      (g) Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792.
      (h) Satkar, Y.; Yera-Ledesma, L. F.; Mali, N.; Patil, D.; Navarro-Santos, P.; Segura-Quezada, L. A.; Ramírez-Morales, P. I.; Solorio-Alvarado, C. R. J. Org. Chem. 2019, 84, 4149.
      (i) Segura-Quezada, A.; Satkar, Y.; Patil, D.; Mali, N.; Wrobel, K.; González, G.; Zárraga, R.; Ortiz-Alvarado, R.; Solorio-Alvarado, C. R. Tetrahedron Lett. 2019, 60, 1551.

    6. [6]

      For selected recent reports, see: (a) Mal, K.; Sharma, A.; Maulik, P. R.; Das, I. Chem.-Eur. J. 2013, 20, 662.
      (b) Liu, C.; Dai, R.; Yao, G.; Deng, Y. J. Chem. Res. 2014, 38, 593.
      (c) Song, S.; Li, X.; Sun, X.; Yuan, Y.; Jiao, N. Green Chem. 2015, 17, 3285.
      (d) Karki, M.; Magolan, J. J. Org. Chem. 2015, 80, 3701.
      (e) Mal, K.; Kaur, A.; Haque, F.; Das, I. J. Org. Chem. 2015, 80, 640.
      (f) Sorabad, G. S.; Maddani, M. R. New J. Chem. 2019, 43, 6563.

    7. [7]

      (a) Pandit, P. K.; Gayen, S.; Khamarui, S.; Chatterjee, N.; Maiti, D. K. Chem. Commun. 2011, 47, 6933.
      (b) Iskra, J.; Murphree, S. S. Tetrahedron Lett. 2017, 58, 645.
      (c) Xin, H.; Yang, S.; An, B.; An, Z. RSC Adv. 2017, 7, 13467.
      (d) Tomizuka, A.; Moriyama, K. Adv. Synth. Catal. 2019, 361, 1447.
      (e) Xin, H.; Hu, L.; Yu, J.; Sun, W.; An, Z. Catal. Commun. 2017, 93, 1.
      (f) Kajita, H.; Togni, A. ChemistrySelect 2017, 2, 1117.
      (g) Cao, L.; Liu, B.; Liu, W.; Yao, G.; Cheng, Q. Chin. J. Org. Chem. 2011, 31, 2178(in Chinese).
      (曹志凌, 刘冰, 刘玮炜, 姚国伟, 程青芳, 有机化学, 2011, 31, 2178.)

    8. [8]

      Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17, 2886.  doi: 10.1021/acs.orglett.5b00932

    9. [9]

      For reviews, see: (a) Huang, Z.; Lumb, J.-P. ACS Catal. 2019, 9, 521.
      (b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
      (c) Yanagi, T.; Nogi, K.; Yorimitsu, H. Tetrahedron Lett. 2018, 59, 2951.

    10. [10]

      (a) Ma, X.-T.; Tian, S.-K. Adv. Synth. Catal. 2013, 355, 337.
      (b) Ma, X.; Yu, J.; Jiang, M.; Wang, M.; Tang, L.; Wei, M.; Zhou, Q. Eur. J. Org. Chem. 2019, 4593.

    11. [11]

      Chauhan and coworkers reported a regioselective bromination of phenol with HBr at room temperature. The target 4-bromophenol could be obtained in 89% yield, but no experimental details could be found in the literature, see: Srivastava, S. K.; Chauhan, P. M. S.; Bhaduri, A. P. Chem. Commun. 1996, 2679 for details. We attempted for some times, but the target 3a was obtained only in low yield by using DMSO as a solvent at room temperature.

    12. [12]

      Our experimental results are consistent with Jiao's observation, ie the use of stoichiometric DMSO as the oxidant instead of as the solvent can greatly improve the reaction efficiency and selectivity, see Ref. [8].

    13. [13]

      Kakarla, R.; Dulina, R. G.; Hatzenbuhler, N. T.; Hui, Y. W.; Sofia, M. J. J. Org. Chem. 1996, 61, 8347.  doi: 10.1021/jo961478h

    14. [14]

      Choudhury, L. H.; Parvin, T.; Khan, A. T. Tetrahedron 2009, 65, 9513.  doi: 10.1016/j.tet.2009.07.052

    15. [15]

      Ghiaci, M.; Sedaghat, M. E.; Ranjbari, S.; Gil, A. Appl. Catal. A:Gen. 2010, 384, 18.  doi: 10.1016/j.apcata.2010.05.053

    16. [16]

      Mabic, S.; Lepoittevin, J.-P. Tetrahedron Lett. 1995, 36, 1705.  doi: 10.1016/0040-4039(95)00050-M

    17. [17]

      Lou, S.-J.; Chen, Q.; Wang, Y.-F.; Xu, D.-Q.; Du, X.-H.; He, J.-Q.; Mao, Y.-J.; Xu, Z.-Y. ACS Catal. 2015, 5, 2846.  doi: 10.1021/acscatal.5b00306

    18. [18]

      Xiong, X.; Yeung, Y.-Y. ACS Catal. 2018, 8, 4033.  doi: 10.1021/acscatal.8b00327

    19. [19]

      Carrigan, M. D.; Sarapa, D.; Smith, R. C.; Wieland, L. C.; Mohan, R. S. J. Org. Chem. 2002, 67, 1027.  doi: 10.1021/jo016180s

    20. [20]

      Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012, 14, 2874.  doi: 10.1021/ol301104n

    21. [21]

      Diemer, V.; Begaud, M.; Leroux, F. R.; Colobert, F. Eur. J. Org. Chem. 2011, 341.

    22. [22]

      Kajita, H.; Togni, A. ChemistrySelect 2017, 2, 1117.  doi: 10.1002/slct.201700024

    23. [23]

      Kerr, D. J.; Willis, A. C.; Flynn, B. L. Org. Lett. 2004, 6, 457.  doi: 10.1021/ol035822q

    24. [24]

      Liu, Y.; Kim, J.; Seo, H.; Park, S.; Chae, J. Adv. Synth. Catal. 2015, 357, 2205.  doi: 10.1002/adsc.201400941

    1. [1]

      Fusetani, N.; Matsunaga, S. Chem. Rev. 1993, 93, 1793.
      (b) Segraves, E. N.; Shah, R. R.; Segraves, N. L.; Johnson, T. A.; Whitman, S.; Sui, J. K.; Kenyon, V. A.; Cichewicz, R. H.; Crews, P.; Holman, T. R. J. Med. Chem. 2004, 47, 4060.
      (c) Akai, S.; Kakiguchi, K.; Nakamura, Y.; Kuriwaki, I.; Dohi, T.; Harada, S.; Kubo, O.; Morita, N.; Kita, Y. Angew. Chem., Int. Ed. 2007, 46, 7458.
      (d) Qian, S.; Ma, Y.; Gao, S.; Luo, J. Chin. J. Org. Chem. 2018, 38, 1930(in Chinese).
      (钱少平, 马尧睿, 高姗姗, 骆钧飞, 有机化学, 2018, 38, 1930.)
      (e) Zhou, P.; Hou, A.; Wang, Y. Chin. J. Org. Chem. 2018, 38, 156(in Chinese).
      (周鹏飞, 侯爱君, 王洋, 有机化学, 2018, 38, 156.)

    2. [2]

      For reviews: see: (a) Smith, K.; El-HitiI, G. A. Curr. Org. Synth. 2004, 1, 253.
      (b) Saikia, A. J.; Borah, P. P. Chem. Rev. 2016, 116, 6837.

    3. [3]

      For a review, see: (a) Luo, J.; Xu, X.; Zhao, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37, 2873(in Chinese).
      (骆钧飞, 徐星, 赵延超, 梁洪泽, 有机化学, 2017, 37, 2873.)
      For selected recent reports, see: (b) Okada, Y.; Yokozawa, M.; Akiba, M.; Oishi, K.; O-kawa, K.; Akeboshi, T.; Kawamura, Y.; Inokuma, S.; Nakamura, Y.; Nishimura, J. Org. Biomol. Chem. 2003, 1, 2506.
      (c) Bovonsombat, P.; Ali, R.; Khan, C.; Leykajarakul, J.; Pla-on, K.; Aphimanchindakul, S.; Pungcharoenpong, N.; Timsuea, N.; Arunrat, A.; Punpongjareorn, N. Tetrahedron 2010, 66, 6928.
      (d) Racys, D. T.; Warrilow, C. E.; Pimlott, S. L.; Sutherland, A. Org. Lett. 2015, 17, 4782.
      (e) Nishimura, J.; Tang, R.-J.; Milcent, T.; Crousse, B. J. Org. Chem. 2018, 83, 930.

    4. [4]

      For a review, see: Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.

    5. [5]

      For reviews, see: (a) Podgoršek, A.; Zupan, M.; Iskra, J. Angew. Chem., Int. Ed. 2009, 48, 8424.
      (b) Zhang, G.; Wang, Y.; Ding, C.; Liu, R.; Liang, X. Chin. J. Org. Chem. 2011, 31, 804(in Chinese).
      (张国富, 王涌, 丁成荣, 刘仁华, 梁鑫淼, 有机化学, 2011, 31, 804.)
      For selected recent reports, see: (c) Werf, A.; Selander, N. Org. Lett. 2015, 17, 6210.
      (d) Satkar, Y.; Ramadoss, V.; Nahide, P. D.; García-Medina, E.; Juárez-Ornelas, K. A.; Alonso-Castro, A. J.; Chávez-Rivera, R.; Jiménez-Halla, J. O. C.; Solorio-Alvarado, C. R. RSC Adv. 2018, 8, 17806.
      (e) Sorabad, G. S.; Maddani, M. R. New J. Chem. 2019, 43, 6563.
      (f) Walter, C.; Fallows, N.; Kesharwani, T. ACS Omega 2019, 4, 6538.
      (g) Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792.
      (h) Satkar, Y.; Yera-Ledesma, L. F.; Mali, N.; Patil, D.; Navarro-Santos, P.; Segura-Quezada, L. A.; Ramírez-Morales, P. I.; Solorio-Alvarado, C. R. J. Org. Chem. 2019, 84, 4149.
      (i) Segura-Quezada, A.; Satkar, Y.; Patil, D.; Mali, N.; Wrobel, K.; González, G.; Zárraga, R.; Ortiz-Alvarado, R.; Solorio-Alvarado, C. R. Tetrahedron Lett. 2019, 60, 1551.

    6. [6]

      For selected recent reports, see: (a) Mal, K.; Sharma, A.; Maulik, P. R.; Das, I. Chem.-Eur. J. 2013, 20, 662.
      (b) Liu, C.; Dai, R.; Yao, G.; Deng, Y. J. Chem. Res. 2014, 38, 593.
      (c) Song, S.; Li, X.; Sun, X.; Yuan, Y.; Jiao, N. Green Chem. 2015, 17, 3285.
      (d) Karki, M.; Magolan, J. J. Org. Chem. 2015, 80, 3701.
      (e) Mal, K.; Kaur, A.; Haque, F.; Das, I. J. Org. Chem. 2015, 80, 640.
      (f) Sorabad, G. S.; Maddani, M. R. New J. Chem. 2019, 43, 6563.

    7. [7]

      (a) Pandit, P. K.; Gayen, S.; Khamarui, S.; Chatterjee, N.; Maiti, D. K. Chem. Commun. 2011, 47, 6933.
      (b) Iskra, J.; Murphree, S. S. Tetrahedron Lett. 2017, 58, 645.
      (c) Xin, H.; Yang, S.; An, B.; An, Z. RSC Adv. 2017, 7, 13467.
      (d) Tomizuka, A.; Moriyama, K. Adv. Synth. Catal. 2019, 361, 1447.
      (e) Xin, H.; Hu, L.; Yu, J.; Sun, W.; An, Z. Catal. Commun. 2017, 93, 1.
      (f) Kajita, H.; Togni, A. ChemistrySelect 2017, 2, 1117.
      (g) Cao, L.; Liu, B.; Liu, W.; Yao, G.; Cheng, Q. Chin. J. Org. Chem. 2011, 31, 2178(in Chinese).
      (曹志凌, 刘冰, 刘玮炜, 姚国伟, 程青芳, 有机化学, 2011, 31, 2178.)

    8. [8]

      Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17, 2886.  doi: 10.1021/acs.orglett.5b00932

    9. [9]

      For reviews, see: (a) Huang, Z.; Lumb, J.-P. ACS Catal. 2019, 9, 521.
      (b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
      (c) Yanagi, T.; Nogi, K.; Yorimitsu, H. Tetrahedron Lett. 2018, 59, 2951.

    10. [10]

      (a) Ma, X.-T.; Tian, S.-K. Adv. Synth. Catal. 2013, 355, 337.
      (b) Ma, X.; Yu, J.; Jiang, M.; Wang, M.; Tang, L.; Wei, M.; Zhou, Q. Eur. J. Org. Chem. 2019, 4593.

    11. [11]

      Chauhan and coworkers reported a regioselective bromination of phenol with HBr at room temperature. The target 4-bromophenol could be obtained in 89% yield, but no experimental details could be found in the literature, see: Srivastava, S. K.; Chauhan, P. M. S.; Bhaduri, A. P. Chem. Commun. 1996, 2679 for details. We attempted for some times, but the target 3a was obtained only in low yield by using DMSO as a solvent at room temperature.

    12. [12]

      Our experimental results are consistent with Jiao's observation, ie the use of stoichiometric DMSO as the oxidant instead of as the solvent can greatly improve the reaction efficiency and selectivity, see Ref. [8].

    13. [13]

      Kakarla, R.; Dulina, R. G.; Hatzenbuhler, N. T.; Hui, Y. W.; Sofia, M. J. J. Org. Chem. 1996, 61, 8347.  doi: 10.1021/jo961478h

    14. [14]

      Choudhury, L. H.; Parvin, T.; Khan, A. T. Tetrahedron 2009, 65, 9513.  doi: 10.1016/j.tet.2009.07.052

    15. [15]

      Ghiaci, M.; Sedaghat, M. E.; Ranjbari, S.; Gil, A. Appl. Catal. A:Gen. 2010, 384, 18.  doi: 10.1016/j.apcata.2010.05.053

    16. [16]

      Mabic, S.; Lepoittevin, J.-P. Tetrahedron Lett. 1995, 36, 1705.  doi: 10.1016/0040-4039(95)00050-M

    17. [17]

      Lou, S.-J.; Chen, Q.; Wang, Y.-F.; Xu, D.-Q.; Du, X.-H.; He, J.-Q.; Mao, Y.-J.; Xu, Z.-Y. ACS Catal. 2015, 5, 2846.  doi: 10.1021/acscatal.5b00306

    18. [18]

      Xiong, X.; Yeung, Y.-Y. ACS Catal. 2018, 8, 4033.  doi: 10.1021/acscatal.8b00327

    19. [19]

      Carrigan, M. D.; Sarapa, D.; Smith, R. C.; Wieland, L. C.; Mohan, R. S. J. Org. Chem. 2002, 67, 1027.  doi: 10.1021/jo016180s

    20. [20]

      Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012, 14, 2874.  doi: 10.1021/ol301104n

    21. [21]

      Diemer, V.; Begaud, M.; Leroux, F. R.; Colobert, F. Eur. J. Org. Chem. 2011, 341.

    22. [22]

      Kajita, H.; Togni, A. ChemistrySelect 2017, 2, 1117.  doi: 10.1002/slct.201700024

    23. [23]

      Kerr, D. J.; Willis, A. C.; Flynn, B. L. Org. Lett. 2004, 6, 457.  doi: 10.1021/ol035822q

    24. [24]

      Liu, Y.; Kim, J.; Seo, H.; Park, S.; Chae, J. Adv. Synth. Catal. 2015, 357, 2205.  doi: 10.1002/adsc.201400941

  • 加载中
    1. [1]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    2. [2]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    3. [3]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    4. [4]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    5. [5]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    6. [6]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    7. [7]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    8. [8]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    9. [9]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    10. [10]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    11. [11]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    12. [12]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    13. [13]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    14. [14]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    15. [15]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    16. [16]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    17. [17]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    18. [18]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    19. [19]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    20. [20]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

Metrics
  • PDF Downloads(11)
  • Abstract views(1547)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return