Steric Hindrance Effect Leading to Regioselective Bromination of Phenols with HBr
- Corresponding author: Ma Xiantao, xiantaoma@126.com
Citation:
Ma Xiantao, Zhou Kunjie, Ren Mengjuan, Wang Mengyu, Yu Jing. Steric Hindrance Effect Leading to Regioselective Bromination of Phenols with HBr[J]. Chinese Journal of Organic Chemistry,
;2019, 39(10): 2796-2801.
doi:
10.6023/cjoc201907038
Bromated phenols are important synthetic intermediates of some natural products and biologically active compounds.[1] While the toxic and corrosive molecular bromine was frequently used in bromination of phenols via electrophilic aromatic substitution (EAS), despite the drawbacks of low regioselectivity and poor functional group tolerance.[2] Then N-bromosuccinimide (NBS) and the analogues were developed as more preferable alternatives and widely used in organic synthesis, however, these brominating reagents are usually expensive.[3]
Inspired by the enzyme-catalyzed oxidative halogenation in nature, [4] the slow release of brominating reagent by oxidation of bromide has recently received much attention.[5] HBr is the byproduct of Br2-based bromination in ton scale every year, which is readily available, inexpensive, easy to store and handle.[6] therefore, it would be worthwhile to develop practical methods to utilize HBr efficiently. The combination of HBr with an oxidant such as selectfluor, persulfates, hypervalent iodine, H2O2, air and dimethyl sulfoxide (DMSO), was then developed for oxidative bromination.[5a, 5b, 7] However, the use of selectfluor, persulfates, or hypervalent iodine as the oxidant has obvious drawbacks of expensive price and/or generation of many wastes, while the reaction with the greener H2O2 or air generally required metal catalysts and/or harsh reaction conditions. In contrast, using the cheap and easily available DMSO seems much attractive, due to the advantages of safety, high atom economy, mild and metal-free conditions.
In 2015, Jiao and coworkers[8] found that the use of stoichiometric DMSO as the oxidant instead of the solvent can greatly improve the reaction efficiency and selectivity, leading to an efficient and practical halogenation of arenes. However, owing to the negligibly electronic differences between para- and ortho-position of phenols, obtaining high selectivity at para-position of phenols remains challenging at present.[9] Therefore, it is still highly desired to develop a mild, regioselective and waster-free bromination of phenols.
With our continuous interest in regioselective halogenation, [10] we recently observed an unexpected steric hindrance effect from byproduct leading to a mild and regioselective bromination of phenols with TMSBr.[10b] However, the use of the expensive and water-sensitive TMSBr narrowed the wide applications of this new method. Herein, we wish to report a mild, efficient and regioselective bromination of phenols with the cheap and easily-available HBr, and by replacing the common used DMSO with sulfoxides bearing sterically hindered substituents. The desired brominated phenols could be obtained in high selectivity (p/o up to 99/1). Notably, this new method could be easily scaled up to 50 mmol scale without reduction in reaction selectivity and has the potential to isolate the desired product and recycle the byproduct thioether by simple extraction and recrystallization. Moreover, water is the sole byproduct, making the method much greener and practical.
The mixture of phenol (1a) and HBr was initially stirred in a solvent of DMSO at 25 ℃, and the target 3a could be obtained in 25% yield with a poor selectivity of 65/35 (3a/4a) (Table 1, Entry 1).[11] The reaction at 40 ℃ gave target 3a in 55% yield with p/o selectivity of 72/28 (Entry 2). To our delight, using stoichiometric DMSO as the oxidant greatly promoted the reaction, affording the target 3a in a much higher yield (80%) with a higher selectivity of 89/11 (Entry 3).[12] Inspired by our previous regioselective bromination of phenols with TMSBr, [10b] various sulfoxide surrogates such as di-butyl-, di-benzyl-, di-phenyl-, di-4-tolyl- and di-4-chlorphenyl-sulfoxide were then screened to further improve the reaction selectivity (Entries 4~8). As shown in Table 1, the reaction with sulfoxide surrogate bearing sterically hindered group, generally gave target 3a in high selectivity (Entries 3~8).[13] The reaction with di-benzyl sulfoxide gave target 3a in 82% yield with the highest selectivity (98/2) (Entry 5), while the reaction with di-4-chlorphenyl sulfoxide gave target 3a in 91% yield with a comparable selectivity (97/3) (Entry 8). Therefore, di-4-chlorphenyl sulfoxide was chosen as the best sulfoxide surrogate. The reaction solvents were finally screened to further improve the reaction yield, but no better results were obtained (Entries 9~11).
![]() | ||||
Entry | R (2) | Solvent | 3ab/% | 3a/4ac |
1d | Me (2a) | DMSO | 25 | 61/39 |
2 | Me (2a) | DMSO | 55 | 69/31 |
3 | Me (2a) | MeCN | 80 | 89/11 |
4 | n-Bu (2b) | MeCN | 75 | 93/7 |
5 | Bn (2c) | MeCN | 82 | 98/2 |
6 | Ph (2d) | MeCN | 86 | 95/5 |
7 | 4-MeC6H4 (2e) | MeCN | 87 | 96/4 |
8 | 4-ClC6H4 (2f) | MeCN | 91 | 97/3 |
9 | 4-ClC6H4 (2f) | EtOAc | 84 | 94/6 |
10 | 4-ClC6H4 (2f) | DMF | 0 | — |
11 | 4-ClC6H4 (2f) | CHCl3 | 41 | 62/38 |
a Unless otherwise noted, a mixture of 1a (0.50 mmol), HBr (0.525 mmol), sulfoxide 2 (0.50 mmol) and a solvent (2.0 mL) was directly sealed under air in a Schlenk tube, and stirred at 40 ℃ for 12 h, then monitored by thin-layer chromatography (TLC) and/or GC-MS. b Isolated yield based on 1a. c Determined by GC-MS. d 25 ℃. |
With the optimized conditions (Table 1, Entry 8) in hand, various phenols were then tested to extend the scope of the method. As shown in Table 2, like the model reaction, both electron-rich and electron-deficient phenols and even naphthols reacted effectively with HBr, affording the desired products 3a~3m in moderate to high yields (Table 2, Entries 1~14). A series of functional groups such as reactive methoxyl, fluoro, chloro, bromo, aldehyde, and ester groups could be tolerated by this method (Entries 3~8). The reactions of ortho- or meta-substituted of phenols sucessfully gave para-brominated products with high selectivity (Entries 2~10). As to para-substituted phenols, ortho-brominated products were obtained in good yields with high selectivity (Entries 11~13). The method can also be extended to oxidative chlorination with concentrated HCl, but the chlorinated product was obtained with poor p/o selectivity (Entry 15). Unfortunately, the method is not suitable for the synthesis of para-iodinated phenols (Entry 16). Then the method was extended to other electron-rich arenes such as anisole and anilines. To our delight, the target para-brominated products were obtained in moderate to high yields with high selectivity (Entries 17~19).
The potential of this new method in large scale synthesis was also investigated. As shown in Scheme 1, the model reaction of phenol (1a) with HBr could be easily scaled up in 50 mmol scale, affording the desired product 3a in 84% isolated yield (7.23 g) only by extraction and recrystallization. Moreover, the byproduct 5f could be recycled by only extraction, and then be readily oxidized into sulfoxide 2f with H2O2, [13] with a totally > 80% recovery.[12] These experimental results showed great practicality of this new method.
According to our experimental results and the literature reports, [8, 10b, 14] the possible reaction mechanism for this regioselective bromination of phenols is depicted in Scheme 2. HBr is initially oxidized by sulfoxide 2 to R2S•Br2.[8] Then a EAS bromination of phenols leads to the target product 3, meanwhile liberating a molecule of HBr which could be reoxidized by sulfoxide 2 for the next oxidative cycle. Possibly owing to the steric hindrance effect of R group of intermediate 7, the electrophilic bromination at the para-position of phenols is much favorable.[10b]
A practical and regioselective bromination of phenols with the cheap and easily-available HBr was developed. The desired brominated phenols could be obtained with high regioselectivity by replacing the common used DMSO with a sulfoxide bearing sterically hindered substituents. A series of functional groups such as the reactive methoxyl, fluoro, chloro, bromo, aldehyde and ester groups can be tolerated by this method. Moreover, this method could be easily scaled up to 50 mmol and has the potential to isolate the desired product and recycle the byproduct thioether by simple extraction and recry- stallization, showing great practicality of this new method. Further application of this novel method for the regio- selective functionalization of phenols is under way.
1H NMR and 13C NMR spectra were recorded on a JNM-ECZ600R/S3 (Jeol, Japan) (600 MHz and 150 MHz, respectively) using tetramethylsilane as an internal reference. Mass spectra were measured on an Agilent GC-MS-5890A/5975C Plus spectrometer (EI).
All reactions were conducted in a sealed tube under air atmosphere. All the chemicals were purchased from the Energy, Alfa Aesar, and Tansoole Chemical Reagent Co., and used as received.
A mixture of phenol 1a (47.0 mg, 0.50 mmol), HBr (w=33%, in HOAc, 130 mg, 0.525 mmol), di-4-chlo- rphenyl-sulfoxide (135.5 mg, 0.50 mmol) and acetonitrile (2.0 mL) was directly sealed and stirred in a 20 mL tube at 40 ℃ for 12 h. Then the solvent was evaporated and the residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether (V/V=0/100~1/10), to give compound 3a.
4-Bromophenol (3a): Colorless solid. m.p. 65~66 ℃ (lit.[3d] 66~68 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.42~7.30 (m, 2H), 6.81~6.66 (m, 2H), 4.97 (br s, 1H); 13C NMR (150 MHz, CDCl3) δ: 154.72, 132.56, 117.27, 112.94; MS (EI) m/z: 174, 172, 155, 143, 128, 117, 93, 79, 74, 65.
4-Bromo-2-methylphenol (3b): Colorless solid. m.p. 62~63 ℃ (lit.[15] 63~65 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.23 (d, J=1.8 Hz, 1H), 7.16 (dd, J=8.4, 2.4 Hz, 1H), 6.64 (d, J=8.4 Hz, 1H), 4.83 (br s, 1H), 2.21 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 153.01, 133.61, 129.82, 126.32, 116.60, 112.61, 15.75; MS (EI) m/z: 188, 186, 168, 141, 117, 107, 89, 77, 63.
4-Bromo-2-methoxyphenol (3c):[16] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.05~6.88 (m, 2H), 6.79 (d, J=8.4 Hz, 1H), 5.54 (br s, 1H), 3.87 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 147.32, 144.91, 124.23, 115.87, 114.24, 111.68, 56.23; MS (EI) m/z: 204, 202, 189, 187, 161, 159, 145, 143, 133, 131, 117, 108, 94, 79, 63.
4-Bromo-2-fluorophenol (3d):[17] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.20 (dd, J=9.6, 2.4 Hz, 1H), 7.15~7.07 (m, 1H), 6.87 (t, J=9.0 Hz, 1H), 5.96 (br s, 1H); 13C NMR (150 MHz, CDCl3) δ: 151.00 (d, J=242.6 Hz), 142.67 (d, J=13.6 Hz), 128.05 (d, J=3.7 Hz), 119.22 (d, J=21.4 Hz), 118.74 (s), 111.96 (d, J=8.3 Hz); MS (EI) m/z: 192, 190, 172, 163, 161, 144, 142, 111, 95, 83, 63.
4-Bromo-2-chlorophenol (3e):[18] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.59 (d, J=2.4 Hz, 1H), 7.32 (dd, J=8.4, 2.4 Hz 1H), 6.90 (d, J=8.4 Hz, 1H), 5.51 (br s, 1H); 13C NMR (150 MHz, CDCl3) δ: 150.75, 131.52, 131.40, 120.89, 117.71, 112.40; MS (EI) m/z: 210, 208, 206, 179, 177, 172, 170, 153, 144, 142, 127, 117, 99, 91, 73, 63.
2, 4-Dibromophenol (3f):[15] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.59 (d, J=2.4 Hz, 1H), 7.32 (dd, J=8.4, 2.4 Hz, 1H), 6.90 (d, J=8.4 Hz, 1H), 5.51 (br, 1H); 13C NMR (150 MHz, CDCl3) δ: 151.70, 134.13, 132.21, 117.53, 112.73, 110.94; MS (EI) m/z: 252, 251, 223, 197, 173, 143, 117, 92, 74, 63.
5-Bromo-2-hydroxybenzaldehyde (3g): Colorless solid. m.p. 104~105 ℃ (lit.[19] 102~106 ℃); 1H NMR (600 MHz, CDCl3) δ: 10.93 (br s, 1H), 9.83 (br s, 1H), 7.67 (d, J=2.4 Hz, 1H), 7.59 (dd, J=9.0, 2.4 Hz, 1H), 6.90 (d, J=9.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 195.55, 160.64, 139.81, 135.73, 121.82, 119.91, 111.46; MS (EI) m/z: 202, 200, 184, 182, 173, 171, 145, 143, 117, 107, 92, 77, 63.
Ethyl 5-bromo-2-hydroxybenzoate (3h):[20] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 10.79 (br s, 1H), 7.95 (d, J=2.4 Hz, 1H), 7.51 (dd, J=9.0, 2.4 Hz, 1H), 6.87 (d, J=9.0 Hz, 1H), 4.40 (q, J=7.2 Hz, 2H), 1.41 (t, J=7.2 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ: 169.21, 160.73, 138.39, 132.26, 119.64, 114.17, 110.82, 62.01, 14.25; MS (EI) m/z: 246, 244, 218, 216, 200, 198, 172, 170, 159, 143, 119, 91, 81, 63.
4-Bromo-3-methylphenol (3i):[3d] Colorless solid. m.p. 59~60 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.33 (d, J=8.4 Hz, 1H), 6.73 (d, J=3.0 Hz, 1H), 6.54 (dd, J=8.4, 3.0 Hz, 1H), 5.12 (br s, 1H), 2.32 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 154.93, 139.19, 133.09, 117.89, 115.37, 114.59, 23.07; MS (EI) m/z: 188, 186, 168, 141, 117, 107, 89, 77, 63.
3, 4-Dibromophenol (3j):[21] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.43 (d, J=8.4 Hz, 1H), 7.13 (d, J=3.0 Hz, 1H), 6.67 (dd, J=8.4, 3.0 Hz, 1H), 5.35 (br s, 1H); 13C NMR (150 MHz, CDCl3) δ: 155.41, 134.08, 125.04, 120.82, 116.32, 115.35; MS (EI) m/z: 252, 251, 223, 197, 173, 143, 117, 92, 74, 63.
2-bromo-4-methylphenol (3k):[22] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.27 (d, J=1.2 Hz, 1H), 7.00 (dd, J=8.4, 1.2 Hz, 1H), 6.91 (d, J=8.4 Hz, 1H), 5.46 (br s, 1H), 2.26 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 150.07, 132.26, 131.54, 129.87, 115.86, 109.92, 20.32; MS (EI) m/z: 188, 186, 168, 141, 117, 107, 89, 77, 63.
2-Bromo-4-methoxyphenol (3l):[23] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.00 (d, J=3.0 Hz, 1H), 6.93 (d, J=9.0 Hz, 1H), 6.79 (dd, J=9.0, 3.0 Hz, 1H), 5.13 (br s, 1H), 3.74 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 153.85, 146.56, 116.88, 116.42, 115.40, 110.00, 56.06; MS (EI) m/z: 204, 202, 189, 187, 161, 159, 145, 143, 133, 131, 117, 108, 94, 79, 63.
1-Bromonaphthalen-2-ol (3m): Colorless solid. m.p. 80~81 ℃ (lit.[22] 80~82 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.02 (d, J=8.4 Hz, 1H), 7.78 (d, J=8.4 Hz, 2H), 7.72 (d, J=8.4 Hz, 1H), 7.61~7.52 (m, 1H), 7.41~7.36 (m, 1H), 7.26 (d, J=8.4 Hz, 1H), 5.94 (br s, 1H); 13C NMR (150 MHz, CDCl3) δ: 150.67, 132.37, 129.76, 129.42, 128.31, 127.94, 125.42, 124.23, 117.25, 106.21; MS (EI) m/z: 224, 222, 195, 193, 167, 143, 115, 89, 74, 63.
1-Bromo-4-methoxybenzene (3o):[22] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.52~7.29 (m, 2H), 6.90~6.66 (m, 2H), 3.77 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 158.78, 132.33, 115.82, 112.89, 55.51; MS (EI) m/z: 188, 186, 173, 171, 145, 143, 129, 117, 107, 92, 77, 63.
4-Bromoaniline (3q):[22] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.24~7.19 (m, 2H), 6.61~6.48 (m, 2H), 3.65 (br, 2H); 13C NMR (150 MHz, CDCl3) δ: 145.49, 132.10, 116.79, 110.29; MS (EI) m/z: 173, 171, 154, 143, 128, 117, 104, 92, 85, 79, 65, 52.
4-Bromo-N, N-dimethylaniline (3r):[22] Colorless oil. 1H NMR (600 MHz, CDCl3) δ: 7.32~7.27 (m, 2H), 6.60~6.55 (m, 2H), 2.91 (s, 6H); 13C NMR (150 MHz, CDCl3) δ: 149.57, 131.76, 114.17, 108.57, 40.68; MS (EI) m/z: 201, 200, 199, 198, 185, 184, 183, 182, 168, 155, 141, 128, 118, 104, 91, 77, 63, 51.
To a stirred mixture of phenol (1a) (4.70 g, 50 mmol), di-4-chlorphenyl-sulfoxide (2f) (13.50 g, 50 mmol) and acetonitrile (200 mL), HBr (w=33%, in HOAc, 13.0 g, 52.5 mmol, 1.05 equiv.) was slowly added at room temperature, then the mixture was allowed to stirred at 40 ℃ for 18 h. The solvent was evaporated and the residue was alkalified with 1 mol/L sodium hydroxide solution. The mixture was then extracted with ethyl acetate (100 mL×3) and the organic phases were combined, dried with anhydrous sodium sulfate, filtered and ethyl acetate was evaporated by a rotary evaporator to recover di-4-chlor- phenylsulfoxide (2f) and di-4-chlorphenyl thioether (5f), which were then oxidized to regenerate di-4-chlor-phenyl-sulfoxide (2f) (totally > 80% recovery of 2f). The aqueous phase was then acidized with 1 mol/L HCl to pH=1, then extracted with ethyl acetate (200 mL×3) and the organic phases were combined, dried with anhydrous sodium sulfate, and filtered, and ethyl acetate was evaporated by a rotary evaporator to give the crude 3a (8.05 g, p/o=97/3). Finally, the crude 3a was recrystallized with EtOAc/PE (V:V=10:1) to give the pure product (7.23 g, 84% yield).
Bis(4-chlorophenyl)sulfane (5f): colorless solid; m.p. 93~94 ℃ (lit.[24] 95~98 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.29~7.21 (m, 8H); 13C NMR (150 MHz, CDCl3) δ: 134.0, 133.6, 132.4, 129.6; MS (EI) m/z: 228, 213, 195, 185, 171, 153, 143, 141, 128, 117, 102, 91, 77, 65.
Supporting Information Control experiments and copies of 1H NMR and 13C NMR spectra of products. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.
Fusetani, N.; Matsunaga, S. Chem. Rev. 1993, 93, 1793.
(b) Segraves, E. N.; Shah, R. R.; Segraves, N. L.; Johnson, T. A.; Whitman, S.; Sui, J. K.; Kenyon, V. A.; Cichewicz, R. H.; Crews, P.; Holman, T. R. J. Med. Chem. 2004, 47, 4060.
(c) Akai, S.; Kakiguchi, K.; Nakamura, Y.; Kuriwaki, I.; Dohi, T.; Harada, S.; Kubo, O.; Morita, N.; Kita, Y. Angew. Chem., Int. Ed. 2007, 46, 7458.
(d) Qian, S.; Ma, Y.; Gao, S.; Luo, J. Chin. J. Org. Chem. 2018, 38, 1930(in Chinese).
(钱少平, 马尧睿, 高姗姗, 骆钧飞, 有机化学, 2018, 38, 1930.)
(e) Zhou, P.; Hou, A.; Wang, Y. Chin. J. Org. Chem. 2018, 38, 156(in Chinese).
(周鹏飞, 侯爱君, 王洋, 有机化学, 2018, 38, 156.)
For reviews: see: (a) Smith, K.; El-HitiI, G. A. Curr. Org. Synth. 2004, 1, 253.
(b) Saikia, A. J.; Borah, P. P. Chem. Rev. 2016, 116, 6837.
For a review, see: (a) Luo, J.; Xu, X.; Zhao, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37, 2873(in Chinese).
(骆钧飞, 徐星, 赵延超, 梁洪泽, 有机化学, 2017, 37, 2873.)
For selected recent reports, see: (b) Okada, Y.; Yokozawa, M.; Akiba, M.; Oishi, K.; O-kawa, K.; Akeboshi, T.; Kawamura, Y.; Inokuma, S.; Nakamura, Y.; Nishimura, J. Org. Biomol. Chem. 2003, 1, 2506.
(c) Bovonsombat, P.; Ali, R.; Khan, C.; Leykajarakul, J.; Pla-on, K.; Aphimanchindakul, S.; Pungcharoenpong, N.; Timsuea, N.; Arunrat, A.; Punpongjareorn, N. Tetrahedron 2010, 66, 6928.
(d) Racys, D. T.; Warrilow, C. E.; Pimlott, S. L.; Sutherland, A. Org. Lett. 2015, 17, 4782.
(e) Nishimura, J.; Tang, R.-J.; Milcent, T.; Crousse, B. J. Org. Chem. 2018, 83, 930.
For a review, see: Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.
For reviews, see: (a) Podgoršek, A.; Zupan, M.; Iskra, J. Angew. Chem., Int. Ed. 2009, 48, 8424.
(b) Zhang, G.; Wang, Y.; Ding, C.; Liu, R.; Liang, X. Chin. J. Org. Chem. 2011, 31, 804(in Chinese).
(张国富, 王涌, 丁成荣, 刘仁华, 梁鑫淼, 有机化学, 2011, 31, 804.)
For selected recent reports, see: (c) Werf, A.; Selander, N. Org. Lett. 2015, 17, 6210.
(d) Satkar, Y.; Ramadoss, V.; Nahide, P. D.; García-Medina, E.; Juárez-Ornelas, K. A.; Alonso-Castro, A. J.; Chávez-Rivera, R.; Jiménez-Halla, J. O. C.; Solorio-Alvarado, C. R. RSC Adv. 2018, 8, 17806.
(e) Sorabad, G. S.; Maddani, M. R. New J. Chem. 2019, 43, 6563.
(f) Walter, C.; Fallows, N.; Kesharwani, T. ACS Omega 2019, 4, 6538.
(g) Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792.
(h) Satkar, Y.; Yera-Ledesma, L. F.; Mali, N.; Patil, D.; Navarro-Santos, P.; Segura-Quezada, L. A.; Ramírez-Morales, P. I.; Solorio-Alvarado, C. R. J. Org. Chem. 2019, 84, 4149.
(i) Segura-Quezada, A.; Satkar, Y.; Patil, D.; Mali, N.; Wrobel, K.; González, G.; Zárraga, R.; Ortiz-Alvarado, R.; Solorio-Alvarado, C. R. Tetrahedron Lett. 2019, 60, 1551.
For selected recent reports, see: (a) Mal, K.; Sharma, A.; Maulik, P. R.; Das, I. Chem.-Eur. J. 2013, 20, 662.
(b) Liu, C.; Dai, R.; Yao, G.; Deng, Y. J. Chem. Res. 2014, 38, 593.
(c) Song, S.; Li, X.; Sun, X.; Yuan, Y.; Jiao, N. Green Chem. 2015, 17, 3285.
(d) Karki, M.; Magolan, J. J. Org. Chem. 2015, 80, 3701.
(e) Mal, K.; Kaur, A.; Haque, F.; Das, I. J. Org. Chem. 2015, 80, 640.
(f) Sorabad, G. S.; Maddani, M. R. New J. Chem. 2019, 43, 6563.
(a) Pandit, P. K.; Gayen, S.; Khamarui, S.; Chatterjee, N.; Maiti, D. K. Chem. Commun. 2011, 47, 6933.
(b) Iskra, J.; Murphree, S. S. Tetrahedron Lett. 2017, 58, 645.
(c) Xin, H.; Yang, S.; An, B.; An, Z. RSC Adv. 2017, 7, 13467.
(d) Tomizuka, A.; Moriyama, K. Adv. Synth. Catal. 2019, 361, 1447.
(e) Xin, H.; Hu, L.; Yu, J.; Sun, W.; An, Z. Catal. Commun. 2017, 93, 1.
(f) Kajita, H.; Togni, A. ChemistrySelect 2017, 2, 1117.
(g) Cao, L.; Liu, B.; Liu, W.; Yao, G.; Cheng, Q. Chin. J. Org. Chem. 2011, 31, 2178(in Chinese).
(曹志凌, 刘冰, 刘玮炜, 姚国伟, 程青芳, 有机化学, 2011, 31, 2178.)
Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17, 2886.
doi: 10.1021/acs.orglett.5b00932
For reviews, see: (a) Huang, Z.; Lumb, J.-P. ACS Catal. 2019, 9, 521.
(b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
(c) Yanagi, T.; Nogi, K.; Yorimitsu, H. Tetrahedron Lett. 2018, 59, 2951.
(a) Ma, X.-T.; Tian, S.-K. Adv. Synth. Catal. 2013, 355, 337.
(b) Ma, X.; Yu, J.; Jiang, M.; Wang, M.; Tang, L.; Wei, M.; Zhou, Q. Eur. J. Org. Chem. 2019, 4593.
Chauhan and coworkers reported a regioselective bromination of phenol with HBr at room temperature. The target 4-bromophenol could be obtained in 89% yield, but no experimental details could be found in the literature, see: Srivastava, S. K.; Chauhan, P. M. S.; Bhaduri, A. P. Chem. Commun. 1996, 2679 for details. We attempted for some times, but the target 3a was obtained only in low yield by using DMSO as a solvent at room temperature.
Our experimental results are consistent with Jiao's observation, ie the use of stoichiometric DMSO as the oxidant instead of as the solvent can greatly improve the reaction efficiency and selectivity, see Ref. [
Kakarla, R.; Dulina, R. G.; Hatzenbuhler, N. T.; Hui, Y. W.; Sofia, M. J. J. Org. Chem. 1996, 61, 8347.
doi: 10.1021/jo961478h
Choudhury, L. H.; Parvin, T.; Khan, A. T. Tetrahedron 2009, 65, 9513.
doi: 10.1016/j.tet.2009.07.052
Ghiaci, M.; Sedaghat, M. E.; Ranjbari, S.; Gil, A. Appl. Catal. A:Gen. 2010, 384, 18.
doi: 10.1016/j.apcata.2010.05.053
Mabic, S.; Lepoittevin, J.-P. Tetrahedron Lett. 1995, 36, 1705.
doi: 10.1016/0040-4039(95)00050-M
Lou, S.-J.; Chen, Q.; Wang, Y.-F.; Xu, D.-Q.; Du, X.-H.; He, J.-Q.; Mao, Y.-J.; Xu, Z.-Y. ACS Catal. 2015, 5, 2846.
doi: 10.1021/acscatal.5b00306
Xiong, X.; Yeung, Y.-Y. ACS Catal. 2018, 8, 4033.
doi: 10.1021/acscatal.8b00327
Carrigan, M. D.; Sarapa, D.; Smith, R. C.; Wieland, L. C.; Mohan, R. S. J. Org. Chem. 2002, 67, 1027.
doi: 10.1021/jo016180s
Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012, 14, 2874.
doi: 10.1021/ol301104n
Diemer, V.; Begaud, M.; Leroux, F. R.; Colobert, F. Eur. J. Org. Chem. 2011, 341.
Kajita, H.; Togni, A. ChemistrySelect 2017, 2, 1117.
doi: 10.1002/slct.201700024
Kerr, D. J.; Willis, A. C.; Flynn, B. L. Org. Lett. 2004, 6, 457.
doi: 10.1021/ol035822q
Liu, Y.; Kim, J.; Seo, H.; Park, S.; Chae, J. Adv. Synth. Catal. 2015, 357, 2205.
doi: 10.1002/adsc.201400941
Fusetani, N.; Matsunaga, S. Chem. Rev. 1993, 93, 1793.
(b) Segraves, E. N.; Shah, R. R.; Segraves, N. L.; Johnson, T. A.; Whitman, S.; Sui, J. K.; Kenyon, V. A.; Cichewicz, R. H.; Crews, P.; Holman, T. R. J. Med. Chem. 2004, 47, 4060.
(c) Akai, S.; Kakiguchi, K.; Nakamura, Y.; Kuriwaki, I.; Dohi, T.; Harada, S.; Kubo, O.; Morita, N.; Kita, Y. Angew. Chem., Int. Ed. 2007, 46, 7458.
(d) Qian, S.; Ma, Y.; Gao, S.; Luo, J. Chin. J. Org. Chem. 2018, 38, 1930(in Chinese).
(钱少平, 马尧睿, 高姗姗, 骆钧飞, 有机化学, 2018, 38, 1930.)
(e) Zhou, P.; Hou, A.; Wang, Y. Chin. J. Org. Chem. 2018, 38, 156(in Chinese).
(周鹏飞, 侯爱君, 王洋, 有机化学, 2018, 38, 156.)
For reviews: see: (a) Smith, K.; El-HitiI, G. A. Curr. Org. Synth. 2004, 1, 253.
(b) Saikia, A. J.; Borah, P. P. Chem. Rev. 2016, 116, 6837.
For a review, see: (a) Luo, J.; Xu, X.; Zhao, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37, 2873(in Chinese).
(骆钧飞, 徐星, 赵延超, 梁洪泽, 有机化学, 2017, 37, 2873.)
For selected recent reports, see: (b) Okada, Y.; Yokozawa, M.; Akiba, M.; Oishi, K.; O-kawa, K.; Akeboshi, T.; Kawamura, Y.; Inokuma, S.; Nakamura, Y.; Nishimura, J. Org. Biomol. Chem. 2003, 1, 2506.
(c) Bovonsombat, P.; Ali, R.; Khan, C.; Leykajarakul, J.; Pla-on, K.; Aphimanchindakul, S.; Pungcharoenpong, N.; Timsuea, N.; Arunrat, A.; Punpongjareorn, N. Tetrahedron 2010, 66, 6928.
(d) Racys, D. T.; Warrilow, C. E.; Pimlott, S. L.; Sutherland, A. Org. Lett. 2015, 17, 4782.
(e) Nishimura, J.; Tang, R.-J.; Milcent, T.; Crousse, B. J. Org. Chem. 2018, 83, 930.
For a review, see: Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.
For reviews, see: (a) Podgoršek, A.; Zupan, M.; Iskra, J. Angew. Chem., Int. Ed. 2009, 48, 8424.
(b) Zhang, G.; Wang, Y.; Ding, C.; Liu, R.; Liang, X. Chin. J. Org. Chem. 2011, 31, 804(in Chinese).
(张国富, 王涌, 丁成荣, 刘仁华, 梁鑫淼, 有机化学, 2011, 31, 804.)
For selected recent reports, see: (c) Werf, A.; Selander, N. Org. Lett. 2015, 17, 6210.
(d) Satkar, Y.; Ramadoss, V.; Nahide, P. D.; García-Medina, E.; Juárez-Ornelas, K. A.; Alonso-Castro, A. J.; Chávez-Rivera, R.; Jiménez-Halla, J. O. C.; Solorio-Alvarado, C. R. RSC Adv. 2018, 8, 17806.
(e) Sorabad, G. S.; Maddani, M. R. New J. Chem. 2019, 43, 6563.
(f) Walter, C.; Fallows, N.; Kesharwani, T. ACS Omega 2019, 4, 6538.
(g) Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792.
(h) Satkar, Y.; Yera-Ledesma, L. F.; Mali, N.; Patil, D.; Navarro-Santos, P.; Segura-Quezada, L. A.; Ramírez-Morales, P. I.; Solorio-Alvarado, C. R. J. Org. Chem. 2019, 84, 4149.
(i) Segura-Quezada, A.; Satkar, Y.; Patil, D.; Mali, N.; Wrobel, K.; González, G.; Zárraga, R.; Ortiz-Alvarado, R.; Solorio-Alvarado, C. R. Tetrahedron Lett. 2019, 60, 1551.
For selected recent reports, see: (a) Mal, K.; Sharma, A.; Maulik, P. R.; Das, I. Chem.-Eur. J. 2013, 20, 662.
(b) Liu, C.; Dai, R.; Yao, G.; Deng, Y. J. Chem. Res. 2014, 38, 593.
(c) Song, S.; Li, X.; Sun, X.; Yuan, Y.; Jiao, N. Green Chem. 2015, 17, 3285.
(d) Karki, M.; Magolan, J. J. Org. Chem. 2015, 80, 3701.
(e) Mal, K.; Kaur, A.; Haque, F.; Das, I. J. Org. Chem. 2015, 80, 640.
(f) Sorabad, G. S.; Maddani, M. R. New J. Chem. 2019, 43, 6563.
(a) Pandit, P. K.; Gayen, S.; Khamarui, S.; Chatterjee, N.; Maiti, D. K. Chem. Commun. 2011, 47, 6933.
(b) Iskra, J.; Murphree, S. S. Tetrahedron Lett. 2017, 58, 645.
(c) Xin, H.; Yang, S.; An, B.; An, Z. RSC Adv. 2017, 7, 13467.
(d) Tomizuka, A.; Moriyama, K. Adv. Synth. Catal. 2019, 361, 1447.
(e) Xin, H.; Hu, L.; Yu, J.; Sun, W.; An, Z. Catal. Commun. 2017, 93, 1.
(f) Kajita, H.; Togni, A. ChemistrySelect 2017, 2, 1117.
(g) Cao, L.; Liu, B.; Liu, W.; Yao, G.; Cheng, Q. Chin. J. Org. Chem. 2011, 31, 2178(in Chinese).
(曹志凌, 刘冰, 刘玮炜, 姚国伟, 程青芳, 有机化学, 2011, 31, 2178.)
Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17, 2886.
doi: 10.1021/acs.orglett.5b00932
For reviews, see: (a) Huang, Z.; Lumb, J.-P. ACS Catal. 2019, 9, 521.
(b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
(c) Yanagi, T.; Nogi, K.; Yorimitsu, H. Tetrahedron Lett. 2018, 59, 2951.
(a) Ma, X.-T.; Tian, S.-K. Adv. Synth. Catal. 2013, 355, 337.
(b) Ma, X.; Yu, J.; Jiang, M.; Wang, M.; Tang, L.; Wei, M.; Zhou, Q. Eur. J. Org. Chem. 2019, 4593.
Chauhan and coworkers reported a regioselective bromination of phenol with HBr at room temperature. The target 4-bromophenol could be obtained in 89% yield, but no experimental details could be found in the literature, see: Srivastava, S. K.; Chauhan, P. M. S.; Bhaduri, A. P. Chem. Commun. 1996, 2679 for details. We attempted for some times, but the target 3a was obtained only in low yield by using DMSO as a solvent at room temperature.
Our experimental results are consistent with Jiao's observation, ie the use of stoichiometric DMSO as the oxidant instead of as the solvent can greatly improve the reaction efficiency and selectivity, see Ref. [
Kakarla, R.; Dulina, R. G.; Hatzenbuhler, N. T.; Hui, Y. W.; Sofia, M. J. J. Org. Chem. 1996, 61, 8347.
doi: 10.1021/jo961478h
Choudhury, L. H.; Parvin, T.; Khan, A. T. Tetrahedron 2009, 65, 9513.
doi: 10.1016/j.tet.2009.07.052
Ghiaci, M.; Sedaghat, M. E.; Ranjbari, S.; Gil, A. Appl. Catal. A:Gen. 2010, 384, 18.
doi: 10.1016/j.apcata.2010.05.053
Mabic, S.; Lepoittevin, J.-P. Tetrahedron Lett. 1995, 36, 1705.
doi: 10.1016/0040-4039(95)00050-M
Lou, S.-J.; Chen, Q.; Wang, Y.-F.; Xu, D.-Q.; Du, X.-H.; He, J.-Q.; Mao, Y.-J.; Xu, Z.-Y. ACS Catal. 2015, 5, 2846.
doi: 10.1021/acscatal.5b00306
Xiong, X.; Yeung, Y.-Y. ACS Catal. 2018, 8, 4033.
doi: 10.1021/acscatal.8b00327
Carrigan, M. D.; Sarapa, D.; Smith, R. C.; Wieland, L. C.; Mohan, R. S. J. Org. Chem. 2002, 67, 1027.
doi: 10.1021/jo016180s
Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012, 14, 2874.
doi: 10.1021/ol301104n
Diemer, V.; Begaud, M.; Leroux, F. R.; Colobert, F. Eur. J. Org. Chem. 2011, 341.
Kajita, H.; Togni, A. ChemistrySelect 2017, 2, 1117.
doi: 10.1002/slct.201700024
Kerr, D. J.; Willis, A. C.; Flynn, B. L. Org. Lett. 2004, 6, 457.
doi: 10.1021/ol035822q
Liu, Y.; Kim, J.; Seo, H.; Park, S.; Chae, J. Adv. Synth. Catal. 2015, 357, 2205.
doi: 10.1002/adsc.201400941
Shuang Li , Jiayu Sun , Guocheng Liu , Shuo Zhang , Zhong Zhang , Xiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148
Guanyang Zeng , Xingqiang Liu , Liangqiao Wu , Zijie Meng , Debin Zeng , Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
Jun-Yi Wang , Jue-Yu Bao , Zheng-Guang Wu , Zheng-Yin Du , Xunwen Xiao , Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Min Fu , Pan He , Sen Zhou , Wenqiang Liu , Bo Ma , Shiying Shang , Yaohao Li , Ruihan Wang , Zhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Botao Gao , He Qi , Hui Liu , Jun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598
Xin Huang , Yi Zhao , Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Ziyou Zhang , Te Ji , Hongliang Dong , Zhiqiang Chen , Zhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542
Shaohua Zhang , Xiaojuan Dai , Wei Hao , Liyao Liu , Yingqiao Ma , Ye Zou , Jia Zhu , Chong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Mingxin Song , Lijing Xie , Fangyuan Su , Zonglin Yi , Quangui Guo , Cheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Chenlu Huang , Xinyu Yang , Qingyu Yu , Linhua Zhang , Dunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051