Citation: Zhong Wenwu, Tang Qian, Yang Zongfa, Zeng Xue, Gan Linling, Lan Zuoping, Yang Yuanjuan. Decarboxylative Oxyphosphorylation of Alkynyl Carboxylic Acids with H-Phosphonates Catalyzed by Cu-Cu2O/GO-NH2[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3467-3474. doi: 10.6023/cjoc201907010 shu

Decarboxylative Oxyphosphorylation of Alkynyl Carboxylic Acids with H-Phosphonates Catalyzed by Cu-Cu2O/GO-NH2

  • Corresponding author: Lan Zuoping, lanzuop@126.com Yang Yuanjuan, Yang_1889@sina.com
  • Received Date: 4 July 2019
    Revised Date: 13 August 2019
    Available Online: 30 December 2019

    Fund Project: the Scientific Research Project of Chongqing Medical and Pharmaceutical College ygz2018102the Medical Scientific Research Project of Chongqing Municipal Health and Family Planning Commission 20142116the Medical Scientific Research Project of Chongqing Municipal Health and Family Planning Commission 2012-1-093the Chinese Medicine Science and Technology Project of Chongqing Municipal Health and Family Planning Commission ZY201402158the Scientific and Technological Research Project of Chongqing Municipal Education Commission KJ1726394Project supported by the Scientific Research Project of Chongqing Medical and Pharmaceutical College (Nos. ygz2018303, ygz2018102), the Medical Scientific Research Project of Chongqing Municipal Health and Family Planning Commission (Nos. 2012-1-093, 20142116), the Chinese Medicine Science and Technology Project of Chongqing Municipal Health and Family Planning Commission (No. ZY201402158), and the Scientific and Technological Research Project of Chongqing Municipal Education Commission (No. KJ1726394)the Scientific Research Project of Chongqing Medical and Pharmaceutical College ygz2018303

Figures(4)

  • A graphene based hybrid with copper nanoparticles (Cu-Cu2O/GO-NH2) as a heterogeneous catalyst for the preparation of β-ketophosphonates was investigated. Compared with traditional homogeneous catalysis, Cu-Cu2O/GO-NH2 catalyst can be recovered from the reaction system. The present methodology provides a facile and efficient approach to access a wide range of β-ketophosphonates in good yields. This reaction can be conducted under base-free conditions without any external co-catalysts, which provides an alternative strategy for the synthesis of β-ketophosphonates.
  • 加载中
    1. [1]

      (a) Balg, C.; Blais, S. P.; Bernier, S. J.; Huot, L.; Couture, M.; Lapointe, J.; Chenevert, R. Bioorg. Med. Chem. 2007, 15, 295.
      (b) Auberger, N.; Gravier-Pelletier, C.; Le Merrer, Y. Eur. J. Org. Chem. 2009, 3323.
      (c) Yang, G.-C.; Shen, C.-R.; Zhang, L.; Zhang, W.-B. Tetrahedron Lett. 2011, 52, 5032.
      (d) Hu, G.-B.; Zhang, Y.; Su, J.; Li, Z.-Z.; Gao, Y.-X.; Zhao, Y.-F. Org. Biomol. Chem. 2015, 13, 8221.
      (e) Yang, Y.; Cai, T.; Wen, T.-B. Chin. J. Org. Chem. 2017, 37, 176(in Chinese).
      (杨玉, 蔡涛, 温庭斌, 有机化学, 2017, 37, 176.)

    2. [2]

      (a) Szewczyk, M. Z.; Rapp, M.; Virieux, D.; Pirat, J.-L.; Koroniak, H. New J. Chem., 2017, 41, 6322.
      (b) Radwan-Olszewska, K.; Palacios, F.; Kafarski, P. J. Org. Chem. 2011, 76, 1170.
      (c) Wang, H.-B.; Fu, Q.; Zhang, Z.-J.; Gao, M.; Ji, J.-X.; Yi, D. Chin. J. Org. Chem. 2018, 38, 134(in Chinese).
      (王华斌, 付强, 张智杰, 高明, 姬建新, 易东, 有机化学, 2018, 38, 134.)
      (d) Chen, X.; Hou, C.; Li, Q.; Liu, Y.; Yang, R.; Hu, X. Chin. J. Catal. 2016, 37, 1389.

    3. [3]

      (a) Xie, L.-Y.; Yuan, R.; Wang, R.-J.; Peng, Z.-H.; Xiang, J.-N.; He, W.-M. Eur. J. Org. Chem. 2014, 2668.
      (b) Wei, W.; Ji, J. X. Angew. Chem. Int. Ed. Engl. 2011, 50, 9097.
      (c) Ke, J.; Tang, Y.-L.; Yi, H.; Li, Y.-L.; Cheng, Y.-D.; Liu, C.; Lei, A.-W. Angew. Chem. Int. Ed. Engl. 2015, 54, 6604.
      (d) Gu, J.; Cai, C. Org. Biomol. Chem. 2017, 15, 4226.
      (e) Zhang, P.-B.; Zhang, L.-L.; Gao, Y.-Z.; Xu, J.; Fang, H.; Tang, G.; Zhao, Y.-F. Chem. Commun. 2015, 51, 7839.
      (f) Liu, K.; Liu, H.; Wang, W.; Ou, L.; Wang, J.; Hu, B. Chin. J. Org. Chem. 2014, 34, 2007(in Chinese).
      (刘开建, 刘宏伟, 王文革, 欧丽娟, 王津津, 胡波年, 有机化学, 2014, 34, 2007.)

    4. [4]

      (a) Li, L.-L.; Huang, W.-B.; Chen, L.-J.; Dong, J.-X.; Ma, X.-B.; Peng, Y.-G. Angew. Chem. Int. Ed. 2017, 56, 10539.
      (b) Liang, W.; Zhang, Z.-J.; Yi, D.; Fu, Q.; Chen, S.-Y.; Yang, L.; Du, F.-T.; Ji, J.-X.; Wei, W. Chin. J. Chem. 2017, 35, 1378.
      (c) Tang, P.; Zhang, C.; Chen, E.; Chen, B.-H.; Chen, W.-T.; Yu, Y.-P. Tetrahedron Lett. 2017, 58, 2157.
      (d) Zhou, P.; Hu, B.; Li, L.; Rao, K.; Yang, J.; Yu, F.-C. J. Org. Chem. 2017, 82, 13268.
      (e) Zeng, Y.-F.; Tan, D.-H.; Lv, W.-X.; Li, Q.-J.; Wang, H.-G. Eur. J. Org. Chem. 2015, 2015, 4335.
      (f) Zhou, M.-X.; Chen, M.; Zhou, Y.; Yang, K.; Su, J.-H.; Du, J.-F.; Song, Q.-L. Org. Lett. 2015, 17, 1786.

    5. [5]

      (a) Zhong, W.-W.; Tan, T.; Shi, L.; Zeng, X. Synlett 2018, 14, 1379.
      (b) Qian, H.-F.; Li, C.-K.; Zhou, Z.-H.; Tao, Z.-K.; Shoberu, A.; Zou, J.-P. Org. Lett. 2018, 20, 5947.
      (c) Yuan, T.; Chen, F.; Lu, G.-P. New J. Chem. 2018, 42, 13957.

    6. [6]

      Hosseinian, A.; Hosseini Nasab, F. A.; Ahmadi, S.; Rahmani, Z.; Vessally, E. RSC Adv. 2018, 8, 26383.  doi: 10.1039/C8RA04557G

    7. [7]

      (a) Gutierrez, V.; Mascaró, E.; Alonso, F.; Moglie, Y.; Radivoy, G. RSC Adv. 2015, 5, 65739.
      (b) Fortunato, L.; Moglie, Y.; Dorn, V.; Radivoy, G. RSC Adv. 2017, 7, 18707.

    8. [8]

      (a) Candu, N.; Dhakshinamoorthy, A.; Apostol, N.; Teodorescu, C.; Corma, A.; Garcia, H.; Parvulescu, V. I. J. Catal. 2017, 352, 59.
      (b) Wang, F.-Y.; Yao, K.-P.; Peng, A.-S.; Wang, C.-Y. Chemistry 2017, 80, 524(in Chinese).
      (王方元, 姚克平, 彭安顺, 王程宇, 化学通报, 2017, 80, 524.)
      (c) Basak, P.; Ghosh, P. Synth. Commun. 2018, 48, 2584.
      (d) Oliveira, R. L.; Oliveira, C. S.; Landers, R.; Correia, C. R. D. ChemistrySelect 2018, 3, 535.
      (e) Wang, Y.-B.; Wang, J.-R.; Wang, B.; Wang, Y.-Y.; Jin, G.-Q.; Guo, X.-G. Catal. Surv. Asia 2018, 22, 123.
      (f) Sengupta, D.; Pandey, M. K.; Mondal, D.; Radhakrishna, L.; Balakrishna, M. S. Eur. J. Inorg. Chem. 2018, 2018, 3374.

    9. [9]

      Dhopte, K. B.; Raut, D. S.; Patwardhan, A. V.; Nemade, P. R. Synth. Commun. 2015, 45, 778.  doi: 10.1080/00397911.2014.989447

    10. [10]

      Chen, X.; Li, X.; Chen, X.-L.; Qu, L.-B.; Chen, J. Y.; Sun, K.; Liu, Z. D.; Bi, W. Z.; Xia, Y. Y.; Wu, H. T.; Zhao, Y. F. Chem. Commun. 2015, 51, 3846.  doi: 10.1039/C4CC10312B

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    3. [3]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    4. [4]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    7. [7]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    8. [8]

      Pengfu Gao Yuan Geng Wei Gong . Homochiral metal-organic frameworks bearing privileged ligands for heterogeneous asymmetric catalysis. Chinese Journal of Structural Chemistry, 2025, 44(10): 100719-100719. doi: 10.1016/j.cjsc.2025.100719

    9. [9]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    10. [10]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    11. [11]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    12. [12]

      Tong ZhaoKe WangFeiyu LiuShiyu ZhangShih-Hsin Ho . Recent progress of tailoring valuable graphene quantum dots from biomass. Chinese Chemical Letters, 2025, 36(6): 110321-. doi: 10.1016/j.cclet.2024.110321

    13. [13]

      Qingyun Yang Yue Ma Quanyi Ye Yiqing Liu Yuhong Luo Yongbo Wu Zhiguang Xu Xiaoming Lin . Prussian blue analogues derived MO/MFe2O4 (M = Ni, Cu, Zn) nanoparticles as a high-performance anode material for enhanced lithium storage. Chinese Journal of Structural Chemistry, 2025, 44(8): 100631-100631. doi: 10.1016/j.cjsc.2025.100631

    14. [14]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    15. [15]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    16. [16]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    17. [17]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    18. [18]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    19. [19]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    20. [20]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

Metrics
  • PDF Downloads(5)
  • Abstract views(952)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return