Citation: Wu Jinwen, Zhu Jiawen, Li Hui, Wu Chunlei, Shen Runpu, Yu Lemao. Recent Advances of Transition Metal-Catalyzed Aerobic Oxygenation with Molecular Oxygen[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3328-3337. doi: 10.6023/cjoc201907005 shu

Recent Advances of Transition Metal-Catalyzed Aerobic Oxygenation with Molecular Oxygen

  • Corresponding author: Shen Runpu, srunpu@usx.edu.cn Yu Lemao, yulm@usx.edu.cn
  • Received Date: 3 July 2019
    Revised Date: 11 August 2019
    Available Online: 30 December 2019

    Fund Project: the Public Projects of Zhejiang Province of China LGG19B02002the Doctoral Research Initiation Fund of Shaoxing University 20185018Project supported by the Public Projects of Zhejiang Province of China (No. LGG19B02002) and the Doctoral Research Initiation Fund of Shaoxing University (No. 20185018)

Figures(13)

  • Oxygen-bearing structures are attractive synthetic targets due to their wide presence in a great number of natural products and biologically active molecules, and their role as useful synthons in organic synthesis. Thus, the preparation of O-bearing compounds has been an important topic. Transition metal-catalyzed aerobic oxygenation strategy has emerged as a novel and efficient methodology for constructing C-C bonds and C-heteroatom bonds. This strategy has become one of the most important and useful synthetic method in organic synthesis of O-bearing compounds. Based on the previous work of our group and others, herein, the new applications of transition metal-catalyzed oxygenation of C-H bond activation and C-C bond cleavage with oxygen as oxygen source are discussed. The recent progress in trans-metal catalytic oxygen insertion of ketones, aldehydes, alkene, alkynes, arene and aromatic heterocyclic compounds has been reviewed. Transition metal-catalysts can initiate oxygen insertion reaction of free radical pathway and realize selective insertion of oxygen radicals under oxygen oxidation. These reactions are characterized by mild conditions, environmental protection and highly atom economy.
  • 加载中
    1. [1]

      Yin, Z.; Wang, Z.; Wu, X. F. Chin. J. Org. Chem. 2019, 39, 573(in Chinese).
       

    2. [2]

      Zhang, Y.; Riemer, D.; Schilling, W.; Kollmann, J.; Das, S. ACS Catal. 2018, 8, 6659.  doi: 10.1021/acscatal.8b01897

    3. [3]

      Thatikonda, T.; Deepake, S. K.; Das, U. Org. Lett. 2019, 21, 2523.  doi: 10.1021/acs.orglett.9b00115

    4. [4]

      Yuan, S.; Wang, Y.; Qiu, G.; Liu, J. B. Chin. J. Org. Chem. 2017, 37, 566(in Chinese).
       

    5. [5]

      Liang, Y. F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1064.
       

    6. [6]

      Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2011, 13, 1622.  doi: 10.1021/ol200425c

    7. [7]

      Wang, Y. F.; Chen, H.; Zhu, X.; Chiba, S. J. Am. Chem. Soc. 2012, 134, 11980.  doi: 10.1021/ja305833a

    8. [8]

      Zhang, C.; Xu, Z.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2011, 50, 11088.  doi: 10.1002/anie.201105285

    9. [9]

      Zhang, C.; Zhang, L.; Jiao, N. Adv. Synth. Catal. 2012, 354, 1293.  doi: 10.1002/adsc.201100892

    10. [10]

      Xu, Z.; Zhang, C.; Jiao, N. Angew. Chem., Int. Ed. 2012, 51, 11367.  doi: 10.1002/anie.201206382

    11. [11]

      Huang, X.; Li, X.; Zou, M.; Pan, J.; Jiao, N. Org. Chem. Front. 2015, 2, 354.  doi: 10.1039/C5QO00028A

    12. [12]

      Kumar, Y.; Jaiswal, Y.; Kumar, A. J. Org. Chem. 2016, 81, 12247.  doi: 10.1021/acs.joc.6b02176

    13. [13]

      Xu, X.; Li, B.; Zhao, Y.; Song, Q. Org. Chem. Front. 2017, 4, 331.  doi: 10.1039/C6QO00635C

    14. [14]

      Chen, X. L.; Peng, Y. H.; Li, Y.; Wu, M. H.; Guo, H. B.; Wang, J.; Sun, S. F. RSC Adv. 2017, 7, 18588.  doi: 10.1039/C7RA02207G

    15. [15]

      Wang, Y.; Liu, H. X.; Zhang, X. F.; Zhang, Z. L.; Huang, D. G. Org. Biomol. Chem. 2017, 15, 9164.  doi: 10.1039/C7OB02192E

    16. [16]

      Su, Y.; Sun, X.; Wu, G.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 9808.  doi: 10.1002/anie.201303917

    17. [17]

      Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 6059.  doi: 10.1021/jacs.5b02347

    18. [18]

      Lu, Q. Q.; Liu, Z. L.; Luo, Y.; Zhang, G. H.; Huang, Z. Y.; Wang, H. M.; Liu, C.; Miller, J. T.; Lei, A. W. Org. Lett. 2015, 17, 3402.  doi: 10.1021/acs.orglett.5b01223

    19. [19]

      Zhou, H.; Chen, Z. Y. Chin. J. Org. Chem. 2018, 38, 719(in Chinese).
       

    20. [20]

      Wei, W.; Liu, C. L.; Yang, D. S.; Wen, J. W.; You, J. M.; Suo, Y. R.; Wang, H. Chem. Commun. 2013, 49, 10239.  doi: 10.1039/c3cc45803b

    21. [21]

      Wei, W.; Wen, J. W.; Yang, D. S.; Wu, M.; You, J. M.; Wang, H. Org. Biomol. Chem. 2014, 12, 7678.  doi: 10.1039/C4OB01369G

    22. [22]

      Gao, W. C.; Cheng, Y. F.; Shang, Y. Z.; Chang, H. H.; Li, X.; Zhou, R.; Qiao, Y.; Wei, W. L. J. Org. Chem. 2018, 83, 11956.  doi: 10.1021/acs.joc.8b01843

    23. [23]

      Toh, K. K.; Wang, Y.-F.; Ng, E. P. J.; Chiba, S. J. Am. Chem. Soc. 2011, 133, 13942.  doi: 10.1021/ja206580j

    24. [24]

      Qian, S. P.; Ma, Y. R.; Gao, S. S.; Luo, J. F. Chin. J. Org. Chem. 2018, 38, 1930(in Chinese).
       

    25. [25]

      Zhang, Y. H.; Yu, J. Q. J. Am. Chem. Soc. 2009, 131, 14654.  doi: 10.1021/ja907198n

    26. [26]

      Yan, Y.; Feng, P.; Zheng, Q.-Z.; Liang, Y.-F.; Lu, J.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 5827.  doi: 10.1002/anie.201300957

    27. [27]

      Chiba, S.; Zhang, L.; Lee, J.-Y. J. Am. Chem. Soc. 2010, 132, 7266.  doi: 10.1021/ja1027327

    28. [28]

      Tnay, Y. L.; Chen, C.; Chua, Y. Y.; Zhang, L.; Chiba, S. Org. Lett. 2012, 14, 3550.  doi: 10.1021/ol301583y

    29. [29]

      Liang, Y.-F.; Li, X.; Wang, X.; Yan, Y.; Feng, P.; Jiao, N. ACS Catal. 2015, 5, 1956.  doi: 10.1021/cs502126n

    30. [30]

      Li, Z.; Huang, X.; Chen, F.; Zhang, C.; Wang, X.; Jiao, N. Org. Lett. 2015, 17, 584.  doi: 10.1021/ol5035996

    31. [31]

      Wu, W.; Xu, J.; Huang, S.; Su, W. Chem. Commun. 2011, 47, 9660.  doi: 10.1039/c1cc10545k

    32. [32]

      Bao, Y.-H.; Zhu, J.-Y.; Qin, W.-B.; Kong, Y.-B.; Chen, Z.-W.; Tang, S.-B.; Liu, L.-X. Org. Biomol. Chem. 2013, 11, 7938.  doi: 10.1039/c3ob41589a

    33. [33]

      Wang, C.; Zhang, L. P.; Ran, A.; Lu, P.; Wang, Y. G. Org. Lett. 2013, 15, 2982.  doi: 10.1021/ol401144m

    34. [34]

      Huang, H.; Cai, J.; Ji, X.; Xiao, F.; Chen, Y.; Deng, G. J. Angew. Chem. 2016, 128, 315.  doi: 10.1002/ange.201508076

    35. [35]

      Guo, S. H.; Wang, F.; Tao, L.; Zhang, X. Y.; Fan, X. S. J. Org. Chem. 2018, 83, 3889.  doi: 10.1021/acs.joc.8b00231

    36. [36]

      Zhang, J.; Kohlbouni, S. T.; Borban, B. Org. Lett. 2019, 21, 14.  doi: 10.1021/acs.orglett.8b03185

    37. [37]

      Yu, L. M.; Zhong, Y.; Yu, J. C.; Gan, L.; Cai, Z. J.; Wang, R.; Jiang, X. X. Chem. Commun. 2018, 54, 2353.  doi: 10.1039/C7CC09640B

    38. [38]

      Yu, L. M. Ph. D. Dissertation, Sun Yat-Sen University, Guangzhou, 2018 (in Chinese).

    39. [39]

      Zhang, C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 28.  doi: 10.1021/ja908911n

    40. [40]

      Wang, J.; Wang, J.; Zhu, Y.; Lu, P.; Wang, Y. Chem. Commun. 2011, 47, 3275.  doi: 10.1039/c0cc04922k

    41. [41]

      Toh, K. K.; Sanjaya, S.; Sahnoun, S.; Chong, S. Y.; Chiba, S. Org. Lett. 2012, 9, 2290.
       

    42. [42]

      Ling, F.; Li, Z. X.; Zhang, C. G.; Liu, X.; Ma, C. J. Am. Chem. Soc. 2014, 136, 10914.  doi: 10.1021/ja506795u

    43. [43]

      Ling, F.; Wan, Y.; Wang, D.; Ma, C. J. Org. Chem. 2016, 81, 2770.  doi: 10.1021/acs.joc.5b02870

    44. [44]

      Liu, X.; Mao, R. J.; Ma, C. Org. Lett. 2017, 19, 6704.  doi: 10.1021/acs.orglett.7b03427

    45. [45]

      Pan, J.; Li, X. Y.; Qiu, X.; Luo, X.; Jiao, N. Org. Lett. 2018, 20, 2762.  doi: 10.1021/acs.orglett.8b00992

    46. [46]

      Zhang, C.; Xu, Z.; Shen, T.; Wu, G.; Zhang, L.; Jiao, N. Org. Lett. 2012, 14, 2362.  doi: 10.1021/ol300781s

    47. [47]

      Zhang, C.; Feng, P.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 15257.  doi: 10.1021/ja4085463

    48. [48]

      Huang, X.; Li, X.; Zou, M.; Song, S.; Tang, C.; Yuan, Y.; Jiao, N. J. Am. Chem. Soc. 2014, 136, 14858.  doi: 10.1021/ja5073004

    49. [49]

      Liu, C.; Yang, Z.; Zeng, Y.; Fang, Z.; Guo, K. Org. Chem. Front. 2017, 4, 2375.  doi: 10.1039/C7QO00690J

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    6. [6]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    11. [11]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    13. [13]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    14. [14]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(46)
  • Abstract views(2514)
  • HTML views(649)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return